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treewidth t implies n®/1°8!) Jower bound

indset matching path grid clique
° o == D @
FPT ? W|[1]-hard

[Marx'10]
Unless ETH fails, Cor.Sus(H) cannot be solved in time

f(H)-no(l"t?) where t = tw(H).
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]

Do there exist sparse graphs Hy of £ edges such that
CorSuB(H) cannot be solved in time 1°()?

Explicit construction Expanders have
of sparse expanders linear treewidth

[Marx’10]
There is a sequence of degree-3 graphs Hy, Hy, - -- s.t. Hy has ¢ edges and

CorSus(Hy) cannot be solved in time 7°/1°8%) ynless ETH fails.
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It suffices to find a graph H that
(1) has k = O(s log s) vertices, (2) is of max degree 4,
and (3) has a matching-linked set of size s.

Our solution: Benes$ network
coined by Véclav Benes in Bell Labs in 1964

Fun fact: it is NOT an expander.

(IMarx'10] and its subsequential simplification [C.S.-Marx-Pilipczuk-Souza24]
essentially require expanders)
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‘ There is a sequence of degree-4 graphs Hi, Hy, - -
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[Marx'10]
s.t. Hy has ¢ edges and

CoLSus(Hy) cannot be solved in time 1°/1°¢ ) unless ETH fails.
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[Marx’10]
There is a sequence of degree-4 graphs Hi, Hp,--- s.t. Hy has ¢ edges and

CoLSus(Hy) cannot be solved in time 1°/1°¢ ) unless ETH fails.
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For any graph H, no no(H) algorithm for CoLSus(H) unless ETH fails.
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Unless ETH fails, CoLSus(H) cannot be solved in time

e n°@ for any graph H with average degree d;
e Asymptotically optimal.

e n°®), for almost every k-vertex graph H with polynomial average degree;
e Asymptotically optimal.

o 1n°t/lo8Y) for any graph with treewidth t = tw(H).

* New proof to Marx’s “Can you beat treewidth?” theorem.

Implications to induced subgraph counting.
[Roth-Schmitt-Wellnitz'20, Déring-Marx—Wellnitz'24,25, Curticapean-Neuen’25]
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Summary

Hardness of subgraph counting via linkage.
Benes network for n?*/198%) Jower bound.

Hardness of general patterns via linkage capacity.
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Close the gap between n
lower bound and n

Can you beat treewidth? (n

lower bound?)
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Bonus slides

formal proof of Bene$ network property

https://tinyurl.com/benesnet

thank Marcelo Mutzbauer for the amazing Interactive Proof
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[Benes’1964]
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