Warning

These slides contain **animations** that might not work properly in some PDF reader. We kindly ask you to open this document in a supported PDF reader.

Known to work: Adobe Acrobat

Known to fail: any web browser, SumatraPDF

n^k

 n^k

$$f(k) \cdot \text{poly}(n)$$
? **FPT** time?

$$n^k$$

$$poly(m,k)$$
 NP-hardness

$$k^k \cdot O(n^{42})$$
? **FPT** time?

$$n^k$$

$$f(k) - poly(n)$$
 W[1]-hardness

$$n^k$$

$$f(k) - poly(n)$$
 W[1]-hardness

$$f(k) \cdot n^{o(k)}$$
?

$$f(k) - poly(n)$$
 W[1]-hardness

$$n^{O(\sqrt{k})}?$$

$$n^k$$
 trivial algorithm

$$f(k) - poly(n)$$
 W[1]-hardness

f(k)-no(k)

Exponential-time hypothesis

 n^k trivial algorithm

no $n^{o(\sqrt{t})}$ algorithm

Do there exist **sparse** graphs H_{ℓ} of ℓ **edges** such that CoLSUB(H) cannot be solved in time $n^{o(\ell)}$?

Do there exist **sparse** graphs H_{ℓ} of ℓ **edges** such that COLSUB(H) cannot be solved in time $n^{o(\ell)}$?

If this is true, then we have **tight** lower bounds for:

colourful subgraph isomorphism CoLSUB(*H*)

treewidth *t* implies $n^{\Omega(t/\log t)}$ lower bound

treewidth *t* implies $n^{\Omega(t/\log t)}$ lower bound

Do there exist **sparse** graphs H_{ℓ} of ℓ **edges** such that CoLSUB(H) cannot be solved in time $n^{o(\ell)}$?

ColSub(H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

k-CLIQUE instance

 V_2 V_1 V_1 V_2 V_3 V_4

k-CLIQUE instance

 V_2 V_1 V_1 V_2 V_3 V_4

k-CLIQUE instance

 V_2 V_1 V_3 V_4

n vertices *k* parts

N^{o(k)} k-Clique instance ∷

3-COLOURING instance

n vertices *k* parts

But this costs us something...

But this costs us something...

But this costs us something...

But this costs us something... Too many new vertices in V_2 !

But this costs us something... Too many new vertices in V_2 !

Routing in paths are highly congested!

Routing in paths are highly congested! Indeed, ColSub(path) is FPT.

H

H

matching-linked set

H

matching-linked set

H

matching-linked set

Η

H

#vertices in each colour $\leq 5n/s$

H

#config vertices $N \le k \cdot 3^{5n/s}$

#config vertices $N \le k \cdot 3^{5n/s}$ s = k/g(k) gives $N^{k/g(k)}$ lower bound

[Marx'10]

There is a sequence of **degree-4** graphs H_1, H_2, \cdots s.t. H_ℓ has ℓ edges and ColSub(H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph H that

[Marx'10]

There is a sequence of **degree-4** graphs H_1, H_2, \dots s.t. H_ℓ has ℓ edges and ColSub(H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph H that

(1) has $k = O(s \log s)$ vertices, (2) is of max degree 4, and (3) has a matching-linked set of size *s*.

[Marx'10] There is a sequence of **degree-4** graphs H_1, H_2, \dots s.t. H_ℓ has ℓ edges and ColSub(H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph H that

(1) has $k = O(s \log s)$ vertices, (2) is of max degree 4, and (3) has a matching-linked set of size *s*.

Our solution: Beneš network

coined by Václav Beneš in Bell Labs in 1964

[Marx'10] There is a sequence of **degree-4** graphs H_1, H_2, \dots s.t. H_ℓ has ℓ edges and ColSub(H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph H that

(1) has $k = O(s \log s)$ vertices, (2) is of max degree 4, and (3) has a matching-linked set of size *s*.

Our solution: Beneš network

coined by Václav Beneš in Bell Labs in 1964

Fun fact: it is **NOT** an expander.

([Marx'10] and its subsequential simplification [C.S.-Marx-Pilipczuk-Souza'24] essentially require expanders)

[Marx'10]

 $B_2 =$

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

There is a sequence of **degree-4** graphs H_1, H_2, \dots s.t. H_ℓ has ℓ edges and ColSub(H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

Link up $M = \{v_1v_7, v_2v_3, v_4v_6, v_5v_8\}$?

[Marx'10] There is a sequence of **degree-4** graphs H_1, H_2, \dots s.t. H_ℓ has ℓ edges and ColSub(H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

Link up $M = \{v_1v_7, v_2v_3, v_4v_6, v_5v_8\}$?

For any graph *H*, no $n^{o(\gamma(H))}$ algorithm for CoLSUB(*H*) unless ETH fails.

- $n^{o(d)}$, for **any** graph *H* with **average degree** *d*;
 - Asymptotically optimal.

- $n^{o(d)}$, for **any** graph *H* with **average degree** *d*;
 - Asymptotically optimal.
- *n*^{*o*(*k*)}, for **almost every** *k***-vertex** graph *H* with **polynomial** average degree;
 - Asymptotically optimal.

- $n^{o(d)}$, for **any** graph *H* with **average degree** *d*;
 - Asymptotically optimal.
- *n^{o(k)}*, for **almost every** *k*-**vertex** graph *H* with **polynomial** average degree;
 - Asymptotically optimal.
- $n^{o(t/\log t)}$, for any graph with treewidth t = tw(H).
 - New proof to Marx's "Can you beat treewidth?" theorem.

Unless ETH fails, ColSub(H) cannot be solved in time

- $n^{o(d)}$, for any graph *H* with average degree *d*;
 - Asymptotically optimal.
- *n*^{*o*(*k*)}, for **almost every** *k***-vertex** graph *H* with **polynomial** average degree;
 - Asymptotically optimal.
- $n^{o(t/\log t)}$, for any graph with treewidth t = tw(H).
 - New proof to Marx's "Can you beat treewidth?" theorem.

Implications to *induced subgraph counting*.

[Roth-Schmitt-Wellnitz'20, Döring-Marx-Wellnitz'24,25, Curticapean-Neuen'25]

Hardness of subgraph counting via **linkage**.

Hardness of subgraph counting via linkage.

Beneš network for $n^{\Omega(k/\log k)}$ lower bound.

Hardness of subgraph counting via linkage.

Beneš network for $n^{\Omega(k/\log k)}$ lower bound.

Hardness of general patterns via **linkage capacity**.

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? ($n^{\Omega(tw(H))}$ lower bound?)

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? ($n^{\Omega(tw(H))}$ lower bound?)

Design algorithms based on linkage capacity? ($n^{O(\gamma(H))}$ algorithm?)

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? ($n^{\Omega(tw(H))}$ lower bound?)

Design algorithms based on linkage capacity? ($n^{O(\gamma(H))}$ algorithm?)

Novel usage of communication networks in complexity theory?

- extension complexity [Göös-Jain-Watson'18]
- PCP [Bafna-Minzer-Vyas-Yun'25].

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? ($n^{\Omega(tw(H))}$ lower bound?)

Design algorithms based on linkage capacity? ($n^{O(\gamma(H))}$ algorithm?)

Novel usage of communication networks in complexity theory?

- extension complexity [Göös-Jain-Watson'18]
- PCP [Bafna-Minzer-Vyas-Yun'25].

New proofs of $(t/\log t)$ -like lower bounds in other settings?

 AC⁰ lower bounds for subgraph isomorphism?
[Li-Razborov-Rossman'17]

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? ($n^{\Omega(tw(H))}$ lower bound?)

Design algorithms based on linkage capacity? ($n^{O(\gamma(H))}$ algorithm?)

Thank you!

Novel usage of communication networks in complexity theory?

- extension complexity [Göös-Jain-Watson'18]
- PCP [Bafna-Minzer-Vyas-Yun'25].

New proofs of $(t/\log t)$ -like lower bounds in other settings?

AC⁰ lower bounds for subgraph isomorphism?
[Li-Razborov-Rossman'17]

Bonus slides

formal proof of Beneš network property

https://tinyurl.com/benesnet thank Marcelo Mutzbauer for the amazing Interactive Proof

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

[Beneš'1964]

