Inapproximability of counting hypergraph colourings

```
Andreas Galanis † Heng Guo ‡ Jiaheng Wang ‡ †University of Oxford ‡University of Edinburgh
```

July 31, 2021

A set of events, each occurs with probability *p* and depends on at most *D* other events.

A set of events, each occurs with probability *p* and depends on at most *D* other events.

Lemma (Lovász Local Lemma)

If $ep(D+1) \leq 1$, then there is a non-zero probability that no event happens.

A set of events, each occurs with probability *p* and depends on at most *D* other events.

Lemma (Lovász Local Lemma)

If $ep(D+1) \le 1$, then there is a non-zero probability that no event happens.

The "canonical" problem (originally considered in [EL75]): hypergraph colouring.

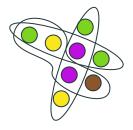
A set of events, each occurs with probability *p* and depends on at most *D* other events.

Lemma (Lovász Local Lemma)

If $ep(D+1) \le 1$, then there is a non-zero probability that no event happens.

The "canonical" problem (originally considered in [EL75]): hypergraph colouring.

- *K*-uniform: *K* vertices in each hyperedge;
- Δ -degree: each vertex appears in $\leqslant \Delta$ hyperedges;
- Event: a hyperedge is monochromatic;
- $p = 1/q^{K-1}, D = K\Delta 1;$
- LLL condition: $\Delta \leqslant \frac{q^{{\it K}-1}}{e{\it K}}$



A set of events, each occurs with probability p and depends on at most D other events.

Lemma (Lovász Local Lemma)

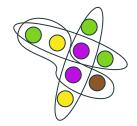
If $ep(D+1) \le 1$, then there is a non-zero probability that no event happens.

The "canonical" problem (originally considered in [EL75]): hypergraph colouring.

- *K*-uniform: *K* vertices in each hyperedge;
- Δ -degree: each vertex appears in $\leqslant \Delta$ hyperedges;
- Event: a hyperedge is monochromatic;

•
$$p = 1/q^{K-1}, D = K\Delta - 1;$$

• LLL condition:
$$\Delta \leqslant \frac{q^{K-1}}{eK}$$



Other kinds of LLL-type problems:

- Boolean *K*-SAT;
- · Constraint Satisfaction Problem;

• ...

Proof of LLL is non-constructive!

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

- Algorithmic LLL [MT10]: efficiently *find* a solution when LLL holds.
- Their output is far from being uniform.

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

- Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.
- Their output is far from being uniform.

LLL condition \rightarrow approximately sampling a (uniform) solution / counting solutions?

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

- Algorithmic LLL [MT10]: efficiently *find* a solution when LLL holds.
- Their output is far from being uniform.

LLL condition \rightarrow approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem	Algorithmic bound	LLL condition
Hypergraph Colourings	$\Delta \lesssim q^{K/3}$	$\Delta \lesssim q^K$
Boolean K-SAT	$\Delta \lesssim 2^{0.175K}$	$\Delta \lesssim 2^K$
General Atomic CSPs	$p^{0.175}\Delta\lesssim 1$	$p\Delta\lesssim 1$

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

- Algorithmic LLL [MT10]: efficiently *find* a solution when LLL holds.
- Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

LLL condition \rightarrow approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem	Algorithmic bound	LLL condition
Hypergraph Colourings	$\Delta \lesssim q^{K/3}$	$\Delta \lesssim q^K$
Boolean K-SAT	$\Delta \lesssim 2^{0.175 K}$	$\Delta \lesssim 2^K$
General Atomic CSPs	$p^{0.175}\Delta\lesssim 1$	$p\Delta\lesssim 1$

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

- Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.
- Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K-SAT, LLL is asymptotically tight [GST16].

 $\mbox{LLL condition} \rightarrow \mbox{approximately sampling a (uniform) solution / counting solutions?}$

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem	Algorithmic bound	LLL condition
Hypergraph Colourings	$\Delta \lesssim q^{K/3}$	$\Delta \lesssim q^K$
Boolean K-SAT	$\Delta \lesssim 2^{0.175K}$	$\Delta \lesssim 2^K$
General Atomic CSPs	$p^{0.175}\Delta\lesssim 1$	$p\Delta\lesssim 1$

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

- Algorithmic LLL [MT10]: efficiently *find* a solution when LLL holds.
- Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For *K*-SAT, LLL is asymptotically tight **[GST16]**.

LLL condition \rightarrow approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem	Algorithmic bound	LLL condition
Hypergraph Colourings	$\Delta \lesssim q^{K/3}$	$\Delta \lesssim q^K$
Boolean K-SAT	$\Delta \lesssim 2^{0.175K}$	$\Delta \lesssim 2^K$
General Atomic CSPs	$p^{0.175}\Delta\lesssim 1$	$p\Delta\lesssim 1$

Intractability region of sampling / counting vs. LLL?

Proof of LLL is non-constructive!

LLL condition \rightarrow construct a solution efficiently?

- Algorithmic LLL [MT10]: efficiently *find* a solution when LLL holds.
- Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For *K*-SAT, LLL is asymptotically tight **[GST16]**.

LLL condition \rightarrow approximately sampling a (uniform) solution / counting solutions?

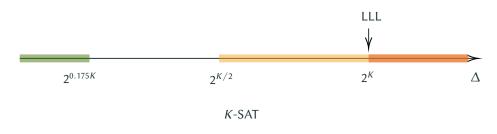
A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem	Algorithmic bound	LLL condition
Hypergraph Colourings	$\Delta \lesssim q^{K/3}$	$\Delta \lesssim q^K$
Boolean K-SAT	$\Delta \lesssim 2^{0.175 K}$	$\Delta \lesssim 2^K$
General Atomic CSPs	$p^{0.175}\Delta\lesssim 1$	$p\Delta\lesssim 1$

Intractability region of sampling / counting vs. LLL?

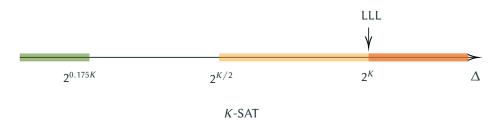
Main topic of the work.

K-SAT



Theorem ([BGGGS16])

If $\Delta \gtrsim 2^{K/2}$, then it is **NP**-hard to sample a satisfying assignment from K-CNF with variable degree $\leqslant \Delta$, even when there is no negation in the formula (aka monotone).



Theorem ([BGGGS16])

If $\Delta \gtrsim 2^{K/2}$, then it is **NP**-hard to sample a satisfying assignment from K-CNF with variable degree $\leqslant \Delta$, even when there is no negation in the formula (aka monotone).

Not true for *K*-SAT!

Hypergraph Colouring

Hypergraph Colouring

Algorithmic bound closer to LLL \dots

Hypergraph Colouring

Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??

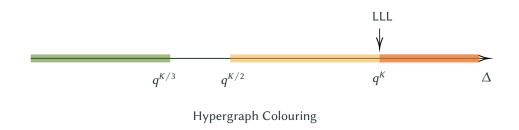
Hypergraph Colouring

Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??

Hardness for searching takes place near LLL indeed, again ...

Theorem

Let $q, K \geqslant 2$ be integers with $(q, K) \neq (2, 2)$. It is **NP**-hard to find a q-colouring on K-uniform simple hypergraphs of maximal degree at most Δ , when $\Delta \geqslant 2Kq^K \ln q + 2q$.



Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??

Hardness for searching takes place near LLL indeed, again ...

... but searching and counting do not coincide either! (at least for even q)

Theorem

Let $q \geqslant 4$ be even, $K \geqslant 4$ be even, and $\Delta \geqslant 5q^{K/2}$. It is **NP**-hard to approximate the number of proper q-colourings in n-vertex K-uniform hypergraphs of maximum degree at most Δ , even within a factor of 2^{cn} for some constant c(q, K) > 0.

- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \rightarrow [q]$;

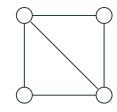
- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- $\emph{\textbf{B}}$: symmetric $q \times q$ matrix with nonnegative entries;

- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \rightarrow [q]$;
- B: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$

- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \rightarrow [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.

Define *q*-spin system over graphs:

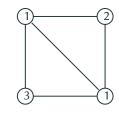
- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.



[6 1 1]	
$B \begin{bmatrix} \begin{bmatrix} b & 1 & \cdots & 1 \\ 1 & b & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & b \end{bmatrix}$	В

Define *q*-spin system over graphs:

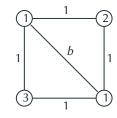
- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.



	Potts model		
В	$\begin{bmatrix} b & 1 & \cdots & 1 \\ 1 & b & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & b \end{bmatrix}$		

Define *q*-spin system over graphs:

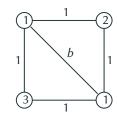
- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.



	Potts model		
В	$\begin{bmatrix} b & 1 & \cdots & 1 \\ 1 & b & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & b \end{bmatrix}$		

Define *q*-spin system over graphs:

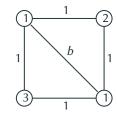
- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.



	Potts model	Proper <i>q</i> -colouring	
В	$\begin{bmatrix} b & 1 & \cdots & 1 \\ 1 & b & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & b \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{bmatrix}$	

Define *q*-spin system over graphs:

- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.

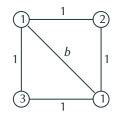


	P	otts	mod	el	Pro	Proper <i>q</i> -colouring				Ising 1	model	
В	[b] 1 : 1	1 b :	···· ··. ··.	1 1 : b		0 1 : : : : : : : : : : : : : : : : : :	····	1 1 : 0		[<i>b</i> 1	1 b	

q-Spin system

Define *q*-spin system over graphs:

- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
 - ... with external field: $w(\sigma) := \prod_{u \in v} f(\sigma(u)) \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v))$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.



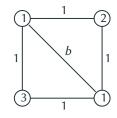
Examples:

$\mathbf{B} \begin{bmatrix} b & 1 & \cdots & 1 \\ 1 & b & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & b \end{bmatrix} \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} b & 1 \\ 1 & b \end{bmatrix}$		Potts model	Proper <i>q</i> -colouring	Ising model	
	В	$ \begin{bmatrix} b & 1 & 1 \\ 1 & b & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} $	1 0 1	$\begin{bmatrix} b & 1 \\ 1 & b \end{bmatrix}$	

q-Spin system

Define *q*-spin system over graphs:

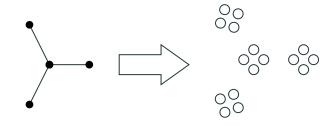
- Spins: $[q] = \{1, 2, 3, \dots, q\}.$
- Configuration: $\sigma: V \to [q]$;
- **B**: symmetric $q \times q$ matrix with nonnegative entries;
- Weight of σ : $w(\sigma) := \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v));$
 - ... with external field: $w(\sigma) := \prod_{u \in v} f(\sigma(u)) \prod_{(u,v) \in E} \mathbf{B}(\sigma(u), \sigma(v))$
- Partition function: $Z_B(G) := \sum_{\sigma} w(\sigma)$.



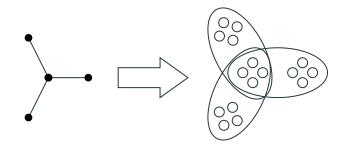
Examples:

	P	otts	mod	el	Proper <i>q</i> -colouring			uring	Ising model	Hard-core Model
В	[b] 1 : 1	1 b :	· · · · · · · · · · · · · · · · · · ·	1 1 : b	[0 1 : 1	1 0 : 1	····	1 1 : : 0	$\begin{bmatrix} b & 1 \\ 1 & b \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
									$f = [1, \lambda]$	$f = [1, \lambda]$

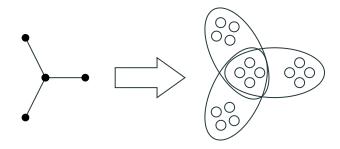
- Consider Δ -regular graph G.



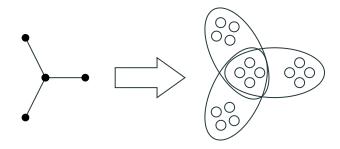
- Consider Δ -regular graph G.
- Each vertex v of $G \rightarrow k$ new vertices H_v in H_G ;



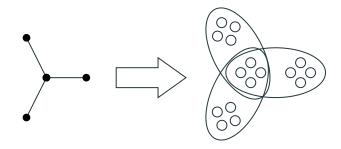
- Consider Δ -regular graph G.
- Each vertex v of $G \rightarrow k$ new vertices H_v in H_G ; each edge \rightarrow hyperedge.



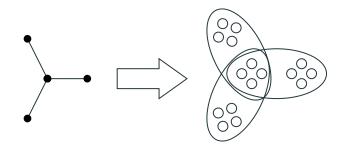
- Consider Δ -regular graph G.
- Each vertex v of $G \rightarrow k$ new vertices H_v in H_G ; each edge \rightarrow hyperedge.
- H_G is Δ -regular and K=2k-uniform.



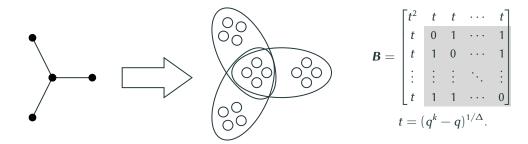
- Consider Δ -regular graph G.
- Each vertex v of $G \to k$ new vertices H_v in H_G ; each edge \to hyperedge.
- H_G is Δ -regular and K = 2k-uniform.
- Consider a proper q-colouring on H_G :



- Consider Δ -regular graph G.
- Each vertex v of $G \to k$ new vertices H_v in H_G ; each edge \to hyperedge.
- H_G is Δ -regular and K = 2k-uniform.
- Consider a proper q-colouring on H_G :
 - H_v has the same colour $s \in [q] \to assign v$ with spin s.



- Consider Δ -regular graph G.
- Each vertex v of $G \to k$ new vertices H_v in H_G ; each edge \to hyperedge.
- H_G is Δ -regular and K = 2k-uniform.
- Consider a proper q-colouring on H_G :
 - H_v has the same colour $s \in [q] \to assign v$ with spin s.
 - H_v has mixed colours \rightarrow assign v with spin 0.



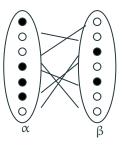
- Consider Δ -regular graph G.
- Each vertex v of $G \to k$ new vertices H_v in H_G ; each edge \to hyperedge.
- H_G is Δ -regular and K = 2k-uniform.
- Consider a proper q-colouring on H_G :
 - H_v has the same colour $s \in [q] \to \text{assign } v$ with spin s.
 - H_v has mixed colours \rightarrow assign v with spin 0.
- It turns out $Z_{\mathbf{B}}(G) = \# \mathsf{HYPERCol}(H_G)$.

Inapproximability of spin systems

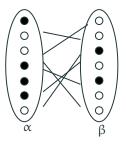
[DFJ02]: Hardness of approximating Hard-core model with $\lambda = 1$ (i.e., #IND), $\Delta \geqslant 25$.

• Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.

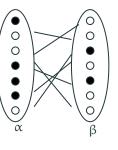
- Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.
- Observe: $d < \text{some threshold} \rightarrow \text{inbalanced "phase"}$.



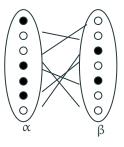
- Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.
- Observe: d < some threshold \rightarrow inbalanced "phase".
- $\mathcal{E}(\alpha, \beta) := \text{Expected } \# \text{ of indset s.t. } \alpha n \text{ in left, } \beta n \text{ in right.}$
- \mathcal{E} takes maximum at $\alpha \neq \beta$.



- Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.
- Observe: d < some threshold \rightarrow inbalanced "phase".
- $\mathcal{E}(\alpha, \beta) := \text{Expected } \# \text{ of indset s.t. } \alpha n \text{ in left, } \beta n \text{ in right.}$
- \mathcal{E} takes maximum at $\alpha \neq \beta$.
- Use this to encode variables in E2LIN2 (**NP**-hard to approx. with factor 11/12).

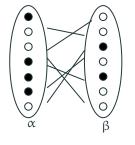


- Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.
- Observe: d < some threshold \rightarrow inbalanced "phase".
- $\mathcal{E}(\alpha, \beta) := \text{Expected } \# \text{ of indset s.t. } \alpha n \text{ in left, } \beta n \text{ in right.}$
- \mathcal{E} takes maximum at $\alpha \neq \beta$.
- Use this to encode variables in E2LIN2 (**NP**-hard to approx. with factor 11/12).
- Didn't prove concentration (only Markov's inequality).



[DFJ02]: Hardness of approximating Hard-core model with $\lambda = 1$ (i.e., #IND), $\Delta \geqslant 25$.

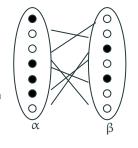
- Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.
- Observe: d < some threshold \rightarrow inbalanced "phase".
- $\mathcal{E}(\alpha, \beta) := \text{Expected \# of indset s.t. } \alpha n \text{ in left, } \beta n \text{ in right.}$
- \mathcal{E} takes maximum at $\alpha \neq \beta$.
- Use this to encode variables in E2LIN2 (**NP**-hard to approx. with factor 11/12).
- Didn't prove concentration (only Markov's inequality).



[MWW09, CCGL12]: Locally tree-like. \rightarrow (non-)uniqueness threshold of Gibbs measure over \mathbb{T}_{Δ} .

[DFJ02]: Hardness of approximating Hard-core model with $\lambda = 1$ (i.e., #IND), $\Delta \geqslant 25$.

- Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.
- Observe: d < some threshold \rightarrow inbalanced "phase".
- $\mathcal{E}(\alpha, \beta) := \text{Expected } \# \text{ of indset s.t. } \alpha n \text{ in left, } \beta n \text{ in right.}$
- \mathcal{E} takes maximum at $\alpha \neq \beta$.
- Use this to encode variables in E2LIN2 (**NP**-hard to approx. with factor 11/12).
- Didn't prove concentration (only Markov's inequality).

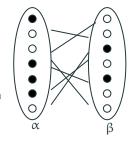


[MWW09, CCGL12]: Locally tree-like. \rightarrow (non-)uniqueness threshold of Gibbs measure over \mathbb{T}_{Δ} .

• (Mixing time behaves differently, though.)

[DFJ02]: Hardness of approximating Hard-core model with $\lambda = 1$ (i.e., #IND), $\Delta \geqslant 25$.

- Gadget: Random (*d*-regular) bipartite graph $G \sim \mathcal{G}_{n,n,d}$.
- Observe: d < some threshold \rightarrow inbalanced "phase".
- $\mathcal{E}(\alpha, \beta) := \text{Expected } \# \text{ of indset s.t. } \alpha n \text{ in left, } \beta n \text{ in right.}$
- \mathcal{E} takes maximum at $\alpha \neq \beta$.
- Use this to encode variables in E2LIN2 (**NP**-hard to approx. with factor 11/12).
- Didn't prove concentration (only Markov's inequality).

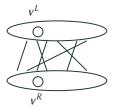


[MWW09, CCGL12]: Locally tree-like. \rightarrow (non-)uniqueness threshold of Gibbs measure over \mathbb{T}_{Δ} .

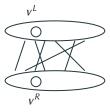
- (Mixing time behaves differently, though.)
- Detailed analysis over the second moment.

- Modify the gadget (nearly d-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.

- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.

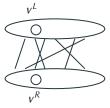


- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- Gadget phases:



- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- Gadget phases:

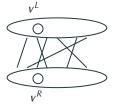
+
$$\Pr[v^L \in I] = p^+, \Pr[v^R \in I] = p^-.$$



- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- Gadget phases:

+
$$\Pr[v^{L} \in I] = p^{+}, \Pr[v^{R} \in I] = p^{-}.$$

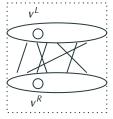
- $\Pr[v^{L} \in I] = p^{-}, \Pr[v^{R} \in I] = p^{+}.$

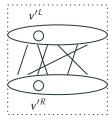


- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- · Gadget phases:

$$+ \Pr[v^L \in I] = p^+, \Pr[v^R \in I] = p^-.$$

$$- \operatorname{Pr}[v^L \in I] = p^-, \operatorname{Pr}[v^R \in I] = p^+.$$

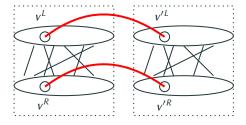




- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- Gadget phases:

$$+ \ \operatorname{\mathsf{Pr}}[v^{\mathit{L}} \in \mathit{I}] = p^+, \operatorname{\mathsf{Pr}}[v^{\mathit{R}} \in \mathit{I}] = p^-.$$

$$- \ \operatorname{Pr}[v^L \in I] = p^-, \operatorname{Pr}[v^R \in I] = p^+.$$



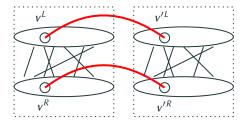
[Sly10]: Hardness of #IND for $\Delta \geqslant 6$.

- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- Gadget phases:

+
$$\Pr[v^{L} \in I] = p^{+}, \Pr[v^{R} \in I] = p^{-}.$$

- $\Pr[v^{L} \in I] = p^{-}, \Pr[v^{R} \in I] = p^{+}.$

• Sample I and I' respectively.

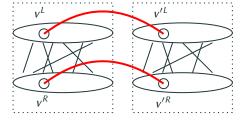


- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- · Gadget phases:

+
$$\Pr[v^{L} \in I] = p^{+}, \Pr[v^{R} \in I] = p^{-}.$$

- $\Pr[v^{L} \in I] = p^{-}, \Pr[v^{R} \in I] = p^{+}.$

- Sample I and I' respectively.
- Possibility *I* and *I'* are valid at *v*:

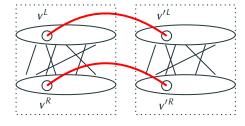


- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- · Gadget phases:

+
$$\Pr[v^{L} \in I] = p^{+}, \Pr[v^{R} \in I] = p^{-}.$$

- $\Pr[v^{L} \in I] = p^{-}, \Pr[v^{R} \in I] = p^{+}.$

- Sample I and I' respectively.
- Possibility *I* and *I'* are valid at *v*:
 - Phases agree: $(1 (p^+)^2)(1 (p^-)^2)$.

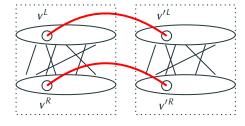


- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- · Gadget phases:

+
$$\Pr[v^{L} \in I] = p^{+}, \Pr[v^{R} \in I] = p^{-}.$$

- $\Pr[v^{L} \in I] = p^{-}, \Pr[v^{R} \in I] = p^{+}.$

- Sample I and I' respectively.
- Possibility *I* and *I'* are valid at *v*:
 - Phases agree: $(1 (p^+)^2)(1 (p^-)^2)$.
 - Phases disagree: $(1 p^+p^-)^2$.



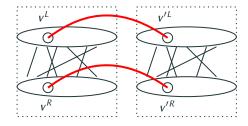
[Sly10]: Hardness of #IND for $\Delta \geqslant 6$.

- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- · Gadget phases:

+
$$\Pr[v^{L} \in I] = p^{+}, \Pr[v^{R} \in I] = p^{-}.$$

- $\Pr[v^{L} \in I] = p^{-}, \Pr[v^{R} \in I] = p^{+}.$

- Sample I and I' respectively.
- Possibility *I* and *I'* are valid at *v*:
 - Phases agree: $(1-(p^+)^2)(1-(p^-)^2)$.
 - Phases disagree: $(1 p^+p^-)^2$.



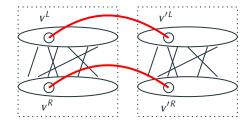
• (Spins of v's are almost independent. Phases take +/- with probability almost 1/2.)

- Modify the gadget (nearly *d*-regular) allowing extra edges outwards.
- · Even more tedious analysis over second moment.
- Reduction from Max-Cut.
- Gadget phases:

+
$$\Pr[v^{l} \in I] = p^{+}, \Pr[v^{R} \in I] = p^{-}.$$

- $\Pr[v^{l} \in I] = p^{-}, \Pr[v^{R} \in I] = p^{+}.$

- Sample I and I' respectively.
- Possibility *I* and *I'* are valid at *v*:
 - Phases agree: $(1-(p^+)^2)(1-(p^-)^2)$.
 - Phases disagree: $(1 p^+p^-)^2$.



- (Spins of v's are almost independent. Phases take +/- with probability almost 1/2.)
- $p^+ \neq p^- \implies (1 (p^+)^2)(1 (p^-)^2) < (1 p^+p^-)^2$. Neighbour phases prefer to differ.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GŠV15]: General antiferromagnetic q-spin.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GŠV15]: General antiferromagnetic *q*-spin.

• Phase $\alpha, \beta \in [0, 1]^q$: fraction of each colour.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

- Phase $\alpha, \beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

- Phase α , $\beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

- Phase $\alpha, \beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.
- Dominant phase: maximizer of $\Psi_1(\alpha, \beta)$.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

- Phase α , $\beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.
- Dominant phase: maximizer of $\Psi_1(\alpha, \beta)$.
- Connect Ψ_1 and Ψ_2 for dominant phases. \to Only need to care Ψ_1 .

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GŠV15]: General antiferromagnetic *q*-spin.

- Phase $\alpha, \beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.
- Dominant phase: maximizer of $\Psi_1(\alpha, \beta)$.
- Connect Ψ_1 and Ψ_2 for dominant phases. \to Only need to care Ψ_1 .

Theorem ([GŠV15])

Suppose $\Delta \geqslant 3$ and \boldsymbol{B} is an ergodic interaction matrix of an antiferromagnetic spin system. If the dominant phases (α,β) satisfy $\alpha \neq \beta$, are permutation symmetric and Hessian dominant, then it is NP-hard to approximate $Z_B(G)$ on an n-vertex triangle-free Δ -regular graph G.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GŠV15]: General antiferromagnetic *q*-spin.

- Phase α , $\beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.
- Dominant phase: maximizer of $\Psi_1(\alpha, \beta)$.
- Connect Ψ_1 and Ψ_2 for dominant phases. \to Only need to care Ψ_1 .

Theorem ([GŠV15])

Suppose $\Delta \geqslant 3$ and \boldsymbol{B} is an ergodic interaction matrix of an antiferromagnetic spin system. If the dominant phases (α,β) satisfy $\alpha \neq \beta$, are permutation symmetric and Hessian dominant, then it is NP-hard to approximate $Z_B(G)$ on an n-vertex triangle-free Δ -regular graph G.

Ergodic: **B** is irreducible and aperiodic.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GŠV15]: General antiferromagnetic *q*-spin.

- Phase α , $\beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.
- Dominant phase: maximizer of $\Psi_1(\alpha, \beta)$.
- Connect Ψ_1 and Ψ_2 for dominant phases. \to Only need to care Ψ_1 .

Theorem ([GŠV15])

Suppose $\Delta \geqslant 3$ and \boldsymbol{B} is an ergodic interaction matrix of an antiferromagnetic spin system. If the dominant phases (α,β) satisfy $\alpha \neq \beta$, are permutation symmetric and Hessian dominant, then it is NP-hard to approximate $Z_{\boldsymbol{B}}(G)$ on an n-vertex triangle-free Δ -regular graph G.

antiferromagnetic: $\lambda_2(\boldsymbol{B}) < 0$.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field). [GŠV15]: General antiferromagnetic *q*-spin.

- Phase $\alpha, \beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_{\mathbf{B}}^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.
- Dominant phase: maximizer of $\Psi_1(\alpha, \beta)$.
- Connect Ψ_1 and Ψ_2 for dominant phases. \to Only need to care Ψ_1 .

Theorem ([GŠV15])

Suppose $\Delta \geqslant 3$ and \mathbf{B} is an ergodic interaction matrix of an antiferromagnetic spin system. If the dominant phases (α, β) satisfy $\alpha \neq \beta$, are permutation symmetric and Hessian dominant, then it is NP-hard to approximate $Z_{\mathbf{B}}(G)$ on an n-vertex triangle-free Δ -regular graph G.

Permutation symmetric: dominant phases can be obtained from each other, by permutating spins while leaving \boldsymbol{B} invariant, or switch α , β , or both.

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GŠV15]: General antiferromagnetic *q*-spin.

- Phase α , $\beta \in [0, 1]^q$: fraction of each colour.
- Ψ_1 : the exponential growth of the expectation of $Z_B^{\alpha,\beta}(G)$, $G \sim \mathcal{G}_{n,n,d}$ w.r.t. n.
- Ψ_2 : exponent in second moment.
- Dominant phase: maximizer of $\Psi_1(\alpha, \beta)$.
- Connect Ψ_1 and Ψ_2 for dominant phases. \to Only need to care Ψ_1 .

Theorem ([GŠV15])

Suppose $\Delta \geqslant 3$ and \boldsymbol{B} is an ergodic interaction matrix of an antiferromagnetic spin system. If the dominant phases (α,β) satisfy $\alpha \neq \beta$, are permutation symmetric and Hessian dominant, then it is NP-hard to approximate $Z_B(G)$ on an n-vertex triangle-free Δ -regular graph G.

Hessian: the Hessian of Ψ_1 is negative-definite.

 Ψ_1 has explicit form... but inconvenient to work with!

 Ψ_1 has explicit form... but inconvenient to work with!

- They introduce a simpler function (**r**, $\mathbf{c} \in \mathbb{R}^q_{\geqslant 0}$):

$$\Phi(\mathbf{r}, \mathbf{c}) := \Delta \ln \frac{\mathbf{r}^{\top} B \mathbf{c}}{\|\mathbf{r}\|_p \|\mathbf{c}\|_p}$$
 where $p = \Delta/(\Delta - 1)$.

 Ψ_1 has explicit form... but inconvenient to work with!

- They introduce a simpler function (r, $\mathbf{c} \in \mathbb{R}^q_{\geqslant 0}$):

$$\Phi(\mathbf{r}, \mathbf{c}) := \Delta \ln \frac{\mathbf{r}^{\top} B \mathbf{c}}{\|\mathbf{r}\|_p \|\mathbf{c}\|_p}$$
 where $p = \Delta/(\Delta - 1)$.

• There's a one-to-one mapping (up to scaling) between critical points of Ψ_1 and Φ ; values are equal at these points. No local maximal at boundaries for either function.

 Ψ_1 has explicit form... but inconvenient to work with!

- They introduce a simpler function (r, $\mathbf{c} \in \mathbb{R}^q_{\geqslant 0}$):

$$\Phi(\mathbf{r}, \mathbf{c}) := \Delta \ln \frac{\mathbf{r}^{\top} \mathbf{B} \mathbf{c}}{\|\mathbf{r}\|_p \|\mathbf{c}\|_p}$$
 where $p = \Delta/(\Delta - 1)$.

• There's a one-to-one mapping (up to scaling) between critical points of Ψ_1 and Φ ; values are equal at these points. No local maximal at boundaries for either function.

Critical points of Φ satisfies $(d := \Delta - 1)$:

$$R_i \propto \left(\sum_{j \in [q]} oldsymbol{B}_{ij} C_j
ight)^d; \qquad C_j \propto \left(\sum_{i \in [q]} oldsymbol{B}_{ij} R_i
ight)^d.$$

 Ψ_1 has explicit form... but inconvenient to work with!

- They introduce a simpler function (r, $\mathbf{c} \in \mathbb{R}^q_{\geqslant 0}$):

$$\Phi(\mathbf{r}, \mathbf{c}) := \Delta \ln \frac{\mathbf{r}^{\top} \mathbf{B} \mathbf{c}}{\|\mathbf{r}\|_{p} \|\mathbf{c}\|_{p}} \quad \text{where } p = \Delta/(\Delta - 1).$$

• There's a one-to-one mapping (up to scaling) between critical points of Ψ_1 and Φ ; values are equal at these points. No local maximal at boundaries for either function.

Critical points of Φ satisfies $(d := \Delta - 1)$:

$$R_i \propto \left(\sum_{j \in [q]} oldsymbol{B}_{ij} C_j
ight)^d; \qquad C_j \propto \left(\sum_{i \in [q]} oldsymbol{B}_{ij} R_i
ight)^d.$$

"Tree recursion": Recursion for marginals on infinite *d*-ary tree. *R*: odd layer; *C*: even layer.

 Ψ_1 has explicit form... but inconvenient to work with!

- They introduce a simpler function (r, $\mathbf{c} \in \mathbb{R}^q_{\geqslant 0}$):

$$\Phi(\mathbf{r}, \mathbf{c}) := \Delta \ln \frac{\mathbf{r}^{\top} \mathbf{B} \mathbf{c}}{\|\mathbf{r}\|_{p} \|\mathbf{c}\|_{p}} \quad \text{where } p = \Delta/(\Delta - 1).$$

• There's a one-to-one mapping (up to scaling) between critical points of Ψ_1 and Φ ; values are equal at these points. No local maximal at boundaries for either function.

Critical points of Φ satisfies $(d := \Delta - 1)$:

$$R_i \propto \left(\sum_{j \in [q]} oldsymbol{B}_{ij} C_j
ight)^d; \qquad C_j \propto \left(\sum_{i \in [q]} oldsymbol{B}_{ij} R_i
ight)^d.$$

"Tree recursion": Recursion for marginals on infinite d-ary tree. R: odd layer; C: even layer.

Jacobian stable fixpoints of tree recursion \iff Hessian local maxima of Ψ_1 .

Dominant phase analysis

i.e., the proof

 Φ is still not easy to analyse:

 Φ is still not easy to analyse:

• Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

• New variables: q_i , R_i , C_i , i = 1, 2, 3.

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

• New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real.

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real. (Need some extra check at boundary)
- Perturb q_i 's to jump out local maxima.

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real. (Need some extra check at boundary)
- Perturb q_i 's to jump out local maxima.

 (q_1, q_2, q_3) -type fixpoint: $q_i > 0$ entries take $R_i(C_i)$ in $\mathbf{r}(\mathbf{c})$; $R_i \neq R_j$, $C_i \neq C_j$ for $i \neq j$, $q_{i,j} > 0$.

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real. (Need some extra check at boundary)
- Perturb q_i 's to jump out local maxima.

 (q_1, q_2, q_3) -type fixpoint: $q_i > 0$ entries take $R_i(C_i)$ in $\mathbf{r}(\mathbf{c})$; $R_i \neq R_j$, $C_i \neq C_j$ for $i \neq j$, $q_{i,j} > 0$.

Candidate maximizers via perturbation argument:

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real. (Need some extra check at boundary)
- Perturb q_i 's to jump out local maxima.

 (q_1, q_2, q_3) -type fixpoint: $q_i > 0$ entries take R_i (C_i) in \mathbf{r} (\mathbf{c}) ; $R_i \neq R_j$, $C_i \neq C_j$ for $i \neq j$, $q_{i,j} > 0$. Candidate maximizers via perturbation argument:

• (q/2, q/2, 0) with $R_1/R_2 = C_2/C_1$.

11 / 15

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size ≤ 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real. (Need some extra check at boundary)
- Perturb q_i 's to jump out local maxima.

 (q_1, q_2, q_3) -type fixpoint: $q_i > 0$ entries take R_i (C_i) in \mathbf{r} (\mathbf{c}) ; $R_i \neq R_j$, $C_i \neq C_j$ for $i \neq j$, $q_{i,j} > 0$. Candidate maximizers via perturbation argument:

- (q/2, q/2, 0) with $R_1/R_2 = C_2/C_1$.
- (q, 0, 0).

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size ≤ 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real. (Need some extra check at boundary)
- Perturb q_i 's to jump out local maxima.

 (q_1, q_2, q_3) -type fixpoint: $q_i > 0$ entries take $R_i(C_i)$ in $\mathbf{r}(\mathbf{c})$; $R_i \neq R_j$, $C_i \neq C_j$ for $i \neq j$, $q_{i,j} > 0$.

Candidate maximizers via perturbation argument:

- (q/2, q/2, 0) with $R_1/R_2 = C_2/C_1$.
- (q, 0, 0). \rightarrow Ruled out by checking stability.

 Φ is still not easy to analyse:

- Each candidate maximizer of Φ is local maxima. \rightarrow Cannot perturb R_i , C_i 's;
- Φ has 2q variables.

Observe: any fixpoint of the tree recursion for *q*-colourings has support size \leq 3 in each side.

- New variables: q_i , R_i , C_i , i = 1, 2, 3. Rewrite Φ . \to Optimization with only 9 variables!
- Relaxation: allow q_i 's to take any nonnegative real. (Need some extra check at boundary)
- Perturb q_i 's to jump out local maxima.

 (q_1, q_2, q_3) -type fixpoint: $q_i > 0$ entries take $R_i(C_i)$ in $\mathbf{r}(\mathbf{c})$; $R_i \neq R_j$, $C_i \neq C_j$ for $i \neq j$, $q_{i,j} > 0$.

Candidate maximizers via perturbation argument:

- (q/2, q/2, 0) with $R_1/R_2 = C_2/C_1$.
- (q, 0, 0). \rightarrow Ruled out by checking stability.

The reason why they can only deal with even q.

Recall:

Proper <i>q</i> -colouring	Our case
[0 1 1]	$\begin{bmatrix} t^2 & t & t & \cdots & t \end{bmatrix}$
1 0 1	$t \mid 0 \mid 1 \mid \cdots \mid 1 \mid$
	t 1 0 ··· 1
[1 1 ··· 0]	$\begin{bmatrix} t & 1 & 1 & \cdots & 0 \end{bmatrix}$
	L

Recall:

Proper <i>q</i> -colouring	Our case
$ \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} $	$\begin{bmatrix} t^2 & t & t & \cdots & t \\ t & 0 & 1 & \cdots & 1 \\ t & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$
	$\begin{bmatrix} t & 1 & 1 & \cdots & 0 \end{bmatrix}$

• ${\bf r}$ and ${\bf c}$ has support size \leqslant 3 respectively (except ${\it R}_0$ and ${\it C}_0$).

Recall:

Proper <i>q</i> -colouring	Our case
[0 1 ··· 1]	$\begin{bmatrix} t^2 & t & t & \cdots & t \end{bmatrix}$
1 0 1	$\begin{bmatrix} t & 0 & 1 & \cdots & 1 \end{bmatrix}$
	$\begin{bmatrix} t & 1 & 0 & \cdots & 1 \end{bmatrix}$
: : : :	
[1 1 ··· 0]	$\begin{bmatrix} t & 1 & 1 & \cdots & 0 \end{bmatrix}$

- **r** and **c** has support size \leq 3 respectively (except R_0 and C_0).
- 11 variables after rewriting $\boldsymbol{\Phi}.$

Recall:

Proper <i>q</i> -colouring	Our case
[0 1 1]	$\begin{bmatrix} t^2 & t & t & \cdots & t \end{bmatrix}$
	$t 0 1 \cdots 1$
	t 1 0 ··· 1
1 1 0	: : : : :
[1 1 0]	$\begin{bmatrix} t & 1 & 1 & \cdots & 0 \end{bmatrix}$

- **r** and **c** has support size \leq 3 respectively (except R_0 and C_0).
- 11 variables after rewriting $\boldsymbol{\Phi}.$

Maximizer behaves differently for $d=\Delta-1$ above or below some threshold.

Recall:

Proper <i>q</i> -colouring	Our case
[0 1 1]	$\begin{bmatrix} t^2 & t & t & \cdots & t \end{bmatrix}$
	$t 0 1 \cdots 1$
	t 1 0 ··· 1
	: : : : :
[1 1 0]	$\begin{bmatrix} t & 1 & 1 & \cdots & 0 \end{bmatrix}$

- **r** and **c** has support size \leq 3 respectively (except R_0 and C_0).
- 11 variables after rewriting Φ .

Maximizer behaves differently for $d = \Delta - 1$ above or below some threshold.

• In fact, **[GŠV15]** considers Potts with $b < \frac{\Delta - q}{\Delta}$.

Support size 3?

Support size $3? \times$

Support size 3? \times

Support size 2?

Support size 3? \times

Support size 2?

• (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- q = 6, k = 3:

 $\mathbf{r} = 0.9863, 0.0045, 0.0045, 0.0045, 0.0001, 0.0001, 0.0001;$

 $\mathbf{c} = 0.9863, 0.0001, 0.0001, 0.0001, 0.0045, 0.0045, 0.0045.$

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- · Unique and stable.

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- · Unique and stable.

$$\begin{bmatrix} t^2 & t & t & \cdots & t \\ t & 0 & 1 & \cdots & 1 \\ t & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t & 1 & 1 & \cdots & 0 \end{bmatrix}$$

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

$$\begin{bmatrix} t^2 & t & t & \cdots & t \\ t & 0 & 1 & \cdots & 1 \\ t & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t & 1 & 1 & \cdots & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

Support size 1 (i.e., (q, 0, 0))?

• Behaves like a 2-spin due to the "mixed" colour!

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

Support size 1 (i.e., (q, 0, 0))?

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,
- (corresponds to $R_0/R_1 = C_0/C_1$,

 $\mathbf{r} = \mathbf{c} = 0.993, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001.$

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,
- (corresponds to $R_0/R_1 = C_0/C_1$, unstable.)

$$\mathbf{r} = \mathbf{c} = 0.993, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001.$$

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,
- (corresponds to $R_0/R_1 = C_0/C_1$, unstable.)
- ... and inbalanced ones (Q^+, Q^-) , (Q^-, Q^+) in non-uniqueness region.

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

Support size 1 (i.e., (q, 0, 0))?

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,
- (corresponds to $R_0/R_1 = C_0/C_1$, unstable.)
- ... and inbalanced ones (Q^+, Q^-) , (Q^-, Q^+) in non-uniqueness region.
- (correspond to $R_0/R_1 \neq C_0/C_1$,

$$\mathbf{r} = 0.9997, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001;$$

 $\mathbf{c} = 0.9732, 0.0045, 0.0045, 0.0045, 0.0045, 0.0045, 0.0045.$

Support size 3? \times

Support size 2?

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- Unique and stable.

Support size 1 (i.e., (q, 0, 0))?

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,
- (corresponds to $R_0/R_1 = C_0/C_1$, unstable.)
- ... and inbalanced ones (Q^+, Q^-) , (Q^-, Q^+) in non-uniqueness region.
- (correspond to $R_0/R_1 \neq C_0/C_1$, stable.)

```
\mathbf{r} = 0.9997, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001;
```

 $\mathbf{c} = 0.9732, 0.0045, 0.0045, 0.0045, 0.0045, 0.0045, 0.0045.$

Support size 3? \times

Support size 2? ✓

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- · Unique and stable.

Support size 1 (i.e., (q, 0, 0))?

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,
- (corresponds to $R_0/R_1 = C_0/C_1$, unstable.)
- ... and inbalanced ones (Q^+, Q^-) , (Q^-, Q^+) in non-uniqueness region.
- (correspond to $R_0/R_1 \neq C_0/C_1$, stable.)

Use a more careful interpolate-and-perturb argument to show 2-supported is global maxima.

Support size 3? \times

Support size 2? ✓

- (q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$.
- · Unique and stable.

Support size 1 (i.e., (q, 0, 0))?

- Behaves like a 2-spin due to the "mixed" colour!
- General antiferro 2-spin: balanced solution (Q^*, Q^*) ,
- (corresponds to $R_0/R_1 = C_0/C_1$, unstable.)
- ... and inbalanced ones (Q^+, Q^-) , (Q^-, Q^+) in non-uniqueness region.
- (correspond to $R_0/R_1 \neq C_0/C_1$, stable.)

Use a more careful interpolate-and-perturb argument to show 2-supported is global maxima.

• (q, 0, 0) with $R_0/R_1 \neq C_0/C_1$ can be regarded as a limit of $(q_1, q_2, 0)$ fixpoint.

Support size 3?

Support size 2?

Support size 1?

Support size 3? \times

Support size 2?

Support size 1?

```
Support size 3? \times
```

Support size 2? \times ((q/2, q/2, 0) with $R_0/R_1=C_0/C_3$ no more exists.)

Support size 1?

```
Support size 3? \times Support size 2? \times ((q/2, q/2, 0) with R_0/R_1=C_0/C_3 no more exists.) Support size 1?
```

• Lies in uniqueness region.

```
Support size 3? \times Support size 2? \times ((q/2, q/2, 0) with R_0/R_1=C_0/C_3 no more exists.) Support size 1?
```

- Lies in uniqueness region.
- Only solution: (Q^*, Q^*) .

```
Support size 3? \times Support size 2? \times ((q/2, q/2, 0) with R_0/R_1=C_0/C_3 no more exists.) Support size 1?
```

- Lies in uniqueness region.
- Only solution: (Q^*, Q^*) .
- · Stable in this case.

Support size 3? \times

Support size 2? \times ((q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$ no more exists.)

Support size 1?

- Lies in uniqueness region.
- Only solution: (Q^*, Q^*) .
- · Stable in this case.
- · Translation-invariant.

 $\mathbf{r} = \mathbf{c} = 0.984, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003.$

Support size 3? \times

Support size 2? \times ((q/2, q/2, 0) with $R_0/R_1 = C_0/C_3$ no more exists.)

Support size 1?

- Lies in uniqueness region.
- Only solution: (Q^*, Q^*) .
- · Stable in this case.
- Translation-invariant.

$$\mathbf{r} = \mathbf{c} = 0.984, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003.$$

Dominant phase satisfies $\alpha = \beta$. Cannot apply **[GŠV15]**.

Hardness side: handle odd q.

Hardness side: handle odd q.

• More detailed comparison between candidates? (Meanwhile improving [GŠV15]?)

Hardness side: handle odd q.

- More detailed comparison between candidates? (Meanwhile improving [GŠV15]?)
- New gadgets from graph to hypergraph?

Hardness side: handle odd *q*.

- More detailed comparison between candidates? (Meanwhile improving [GŠV15]?)
- · New gadgets from graph to hypergraph?
- Analyse asymptotically when, say, $\Delta \gtrsim q^{0.51K}$?

Hardness side: handle odd q.

- More detailed comparison between candidates? (Meanwhile improving [GŠV15]?)
- · New gadgets from graph to hypergraph?
- Analyse asymptotically when, say, $\Delta \gtrsim q^{0.51K}$?

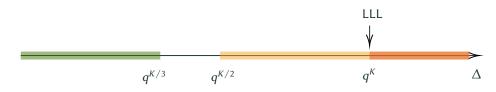
Algorithmic side: close the gap between $q^{K/3}$ and $q^{K/2}$.

Hardness side: handle odd q.

- More detailed comparison between candidates? (Meanwhile improving [GŠV15]?)
- New gadgets from graph to hypergraph?
- Analyse asymptotically when, say, $\Delta \gtrsim q^{0.51K}$?

Algorithmic side: close the gap between $q^{K/3}$ and $q^{K/2}$.

• Which one is the computational transition threshold? (We guess 1/2.)



Hypergraph Colouring

Thank you! arXiv: 2107.05486