Inapproximability of counting

hypergraph colourings

Andreas Galanis T Heng Guo ¥ Jiaheng Wang *
TUniversity of Oxford *University of Edinburgh

July 31, 2021

Lovasz Local Lemma

A set of events, each occurs with probability p and depends on at most D other events.

1/15

Lovasz Local Lemma
A set of events, each occurs with probability p and depends on at most D other events.

Lemma (Lovasz Local Lemma)

If ep(D + 1) < 1, then there is a non-zero probability that no event happens.

1/15

Lovasz Local Lemma

A set of events, each occurs with probability p and depends on at most D other events.
Lemma (Lovasz Local Lemma)

If ep(D + 1) < 1, then there is a non-zero probability that no event happens.

The “canonical” problem (originally considered in [EL75]): hypergraph colouring.

1/15

Lovasz Local Lemma

A set of events, each occurs with probability p and depends on at most D other events.
Lemma (Lovasz Local Lemma)

If ep(D + 1) < 1, then there is a non-zero probability that no event happens.
The “canonical” problem (originally considered in [EL75]): hypergraph colouring.

« K-uniform: K vertices in each hyperedge;

« A-degree: each vertex appears in < A hyperedges;
+ Event: a hyperedge is monochromatic;

e p=1/¢""1,D=KA—T,

o LLL condition: A < @«

K—
eK

1/15

Lovasz Local Lemma

A set of events, each occurs with probability p and depends on at most D other events.
Lemma (Lovasz Local Lemma)

If ep(D + 1) < 1, then there is a non-zero probability that no event happens.
The “canonical” problem (originally considered in [EL75]): hypergraph colouring.

« K-uniform: K vertices in each hyperedge;

« A-degree: each vertex appears in < A hyperedges;
+ Event: a hyperedge is monochromatic;

e p=1/¢""1,D=KA—T,

o LLL condition: A < @«

K—
eK

Other kinds of LLL-type problems:

« Boolean K-SAT;
« Constraint Satisfaction Problem;

1/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition — construct a solution efficiently?

2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition — construct a solution efficiently?

« Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.

« Their output is far from being uniform.

2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!
LLL condition — construct a solution efficiently?

« Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.

« Their output is far from being uniform.

LLL condition — approximately sampling a (uniform) solution / counting solutions?

2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!
LLL condition — construct a solution efficiently?

« Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.

« Their output is far from being uniform.

LLL condition — approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound | LLL condition
Hypergraph Colourings A< i3 A< gf
Boolean K-SAT A < 20175K A <K
General Atomic CSPs p’1PA < pA <1

2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition — construct a solution efficiently?

« Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.

« Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

LLL condition — approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL condition

LLL-type problem Algorithmic bound
Hypergraph Colourings A< gf?
Boolean K-SAT A < 20175K
General Atomic CSPs p’1PA <

A< q"
A <K
pA <1

2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!
LLL condition — construct a solution efficiently?

« Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.

« Their output is far from being uniform.
Intractability region of finding a solution vs. LLL?
« For K-SAT, LLL is asymptotically tight [GST16].
LLL condition — approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound | LLL condition
Hypergraph Colourings A< i3 A< gf
Boolean K-SAT A < 20175K A <K
General Atomic CSPs p’1PA < pA <1

2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!
LLL condition — construct a solution efficiently?

« Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.

« Their output is far from being uniform.
Intractability region of finding a solution vs. LLL?
« For K-SAT, LLL is asymptotically tight [GST16].
LLL condition — approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound | LLL condition
Hypergraph Colourings A< i3 A< gf
Boolean K-SAT A < 20175K A <K
General Atomic CSPs p’1PA < pA <1

Intractability region of sampling / counting vs. LLL?
2/15

Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!
LLL condition — construct a solution efficiently?

« Algorithmic LLL [MT10]: efficiently find a solution when LLL holds.

« Their output is far from being uniform.
Intractability region of finding a solution vs. LLL?
« For K-SAT, LLL is asymptotically tight [GST16].
LLL condition — approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound | LLL condition
Hypergraph Colourings A< i3 A< gf
Boolean K-SAT A < 20175K A <K
General Atomic CSPs p’1PA < pA <1

Intractability region of sampling / counting vs. LLL? <= Main topic of the work.
2/15

Is hardness transition the same for counting and searching?

3/15

Is hardness transition the same for counting and searching?

LLL

v

K-SAT

2K

3/15

Is hardness transition the same for counting and searching?

LLL

v

K-SAT

2K

3/15

Is hardness transition the same for counting and searching?

LLL

v

20175K

K-SAT

2K

3/15

Is hardness transition the same for counting and searching?

LLL

v

20.175K 2K /2 2K A

K-SAT

Theorem ([BGGGS16])

IfA > 25/2, then it is NP-hard to sample a satisfying assignment from K-CNF with variable degree
< A, even when there is no negation in the formula (aka monotone).

3/15

Is hardness transition the same for counting and searching?

LLL

v

20.175K 2K /2 2K A

K-SAT

Theorem ([BGGGS16])

IfA > 25/2, then it is NP-hard to sample a satisfying assignment from K-CNF with variable degree
< A, even when there is no negation in the formula (aka monotone).

Not true for K-SAT!

3/15

Our results

LLL

Hypergraph Colouring

4/15

Our results

LLL

qK/3 qK A
Hypergraph Colouring

Algorithmic bound closer to LLL ...

4/15

Our results

LLL

qK/3 qK A
Hypergraph Colouring

Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??

4/15

Our results

LLL

qK/3 qK A
Hypergraph Colouring

Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??
Hardness for searching takes place near LLL indeed, again ...

Theorem
Let q, K > 2 be integers with (g, K) # (2, 2). It is NP-hard to find a q-colouring on K-uniform
simple hypergraphs of maximal degree at most A, when A > 2Kq® In q + 2q.

4/15

Our results

LLL

qk/3 qk/? g A
Hypergraph Colouring

Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??
Hardness for searching takes place near LLL indeed, again ...
... but searching and counting do not coincide either! (at least for even q)

Theorem

Let g > 4 be even, K > 4 be even, and A > 5qk/2, It is NP-hard to approximate the number of
proper q-colourings in n-vertex K-uniform hypergraphs of maximum degree at most A, even within
a factor of 2°" for some constant c(q, K) > 0.

4/15

g-Spin system

Define g-spin system over graphs:

« Spins: [l ={1,2,3,--- , g}
. Configuration: 0: V — [ql;

5/15

g-Spin system

Define g-spin system over graphs:

« Spins: [l ={1,2,3,--- , g}
. Configuration: 0: V — [ql;

« B: symmetric g X ¢ matrix with nonnegative entries;

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;
« B: symmetric g X ¢ matrix with nonnegative entries;
« Weight of 0: w(0) := [], ,)er B(o(u), o(v));

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;

« B: symmetric g X ¢ matrix with nonnegative entries;
« Weight of 0: w(o) := H(u’v)eEB(O'(u), o(v));

« Partition function: Zg(G) := }_, w(0).

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;

« B: symmetric ¢ X g matrix with nonnegative entries;
« Weight of 0: w(o) := H(U’V)GEB(O'(U), o(v));

« Partition function: Zg(G) := }_, w(0).
Examples:
Potts model
b 1 - 1
B :
1 1 b

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;

« B: symmetric ¢ X g matrix with nonnegative entries;
« Weight of 0: w(o) := H(U’V)GEB(O'(U), o(v));

« Partition function: Zg(G) := }_, w(0).
Examples:
Potts model
b 1 - 1
B :
1 1 b

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;

« B: symmetric ¢ X g matrix with nonnegative entries;
« Weight of 0: w(o) := H(U’V)GEB(O'(U), o(v));

« Partition function: Zg(G) := }_, w(0).
Examples:
Potts model
b 1 - 1
B :
1 1 b

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;

« B: symmetric ¢ X g matrix with nonnegative entries;
« Weight of 0: w(o) := H(U’V)GEB(O'(U), o(v));

« Partition function: Zg(G) := }_, w(0).
Examples:
Potts model Proper g-colouring
b 1 - 1 0 1 -+ 1
1 b - 1 10 - 1
B :
1 1 b 1 1 0

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;

« B: symmetric ¢ X g matrix with nonnegative entries;
« Weight of 0: w(o) := H(U’V)GEB(O'(U), o(v));

« Partition function: Zg(G) := }_, w(0).
Examples:
Potts model Proper g-colouring | Ising model

b 1 - 1 0 1 -+ 1
1 b - 1 10 - 1 b1

B || . : -)
T . 1T b
1 1 b 1 1 0

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;
« B: symmetric ¢ X g matrix with nonnegative entries;
« Weight of 0: w(0) := [], ,)er B(o(u), o(v));
+ ... with external field: w(o) := [[,c, f(0(u)) [](,,)ce Blo(u), o(v))

« Partition function: Zg(G) := }_, w(0).
Examples:

Potts model Proper g-colouring | Ising model
b 1 - 1 0 1 -+ 1
1 b - 1 10 - 1 b1

B | |. . : -)
. . 1 b
1 1 b 1 1 0

f=0A

5/15

g-Spin system

Define g-spin system over graphs:
« Spins: [l ={1,2,3,--- , gL
. Configuration: 0: V — [ql;
« B: symmetric g X ¢ matrix with nonnegative entries;
« Weight of 0: w(0) := [], ,)er B(o(u), o(v));
+ ... with external field: w(o) := [[,c, f(0(u)) [](,,)ce Blo(u), o(v))

« Partition function: Zg(G) := }_, w(0).
Examples:

Potts model Proper g-colouring | Ising model | Hard-core Model
b 1 - 1 0 1 -+ 1
1 b - 1 1 0 --- 1 b 1 1 1

B | |. . : -)
T TR 1 b 10
1 1 b 1 1 0

f=0A f=0A

5/15

Reduction for counting hypergraph colourings

« Consider A-regular graph G.

6/15

Reduction for counting hypergraph colourings

« Consider A-regular graph G.

« Each vertex v of G — k new vertices H, in Hg;

6/15

Reduction for counting hypergraph colourings

« Consider A-regular graph G.

« Each vertex v of G — k new vertices H, in Hg; each edge — hyperedge.

6/15

Reduction for counting hypergraph colourings

« Consider A-regular graph G.
« Each vertex v of G — k new vertices H, in Hg; each edge — hyperedge.

« Hg is A-regular and K = 2k-uniform.

6/15

Reduction for counting hypergraph colourings

« Consider A-regular graph G.
« Each vertex v of G — k new vertices H, in Hg; each edge — hyperedge.
« Hg is A-regular and K = 2k-uniform.

« Consider a proper g-colouring on Hg:

6/15

Reduction for counting hypergraph colourings

« Consider A-regular graph G.

« Each vertex v of G — k new vertices H, in Hg; each edge — hyperedge.
« Hg is A-regular and K = 2k-uniform.

« Consider a proper g-colouring on Hg:

+ H, has the same colour s € [q] — assign v with spin s.

6/15

Reduction for counting hypergraph colourings

« Consider A-regular graph G.

« Each vertex v of G — k new vertices H, in Hg; each edge — hyperedge.
« Hg is A-regular and K = 2k-uniform.

« Consider a proper g-colouring on Hg:

+ H, has the same colour s € [q] — assign v with spin s.

+ H, has mixed colours — assign v with spin 0.

6/15

Reduction for counting hypergraph colourings

£ ot t t

£t 0 1 1

B—|t 1 0 1

:: £1 1 0
t=(q"—q""

« Consider A-regular graph G.
« Each vertex v of G — k new vertices H, in Hg; each edge — hyperedge.
« Hg is A-regular and K = 2k-uniform.

« Consider a proper g-colouring on Hg:

+ H, has the same colour s € [q] — assign v with spin s.

+ H, has mixed colours — assign v with spin 0.

« It turns out Zg(G) = #HypPerCoL(Hg).

6/15

Inapproximability

of spin systems

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.

« Observe: d < some threshold — inbalanced “phase”.

»(00@®@0 ®@0O0

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.
« Observe: d < some threshold — inbalanced “phase”.
« E(a, B) := Expected # of indset s.t. anin left, Bn in right.

« & takes maximum at « # f3.

»(00@®@0 ®@0O0

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.

« Observe: d < some threshold — inbalanced “phase”.

« E(a, B) := Expected # of indset s.t. anin left, Bn in right.
« & takes maximum at « # f3.

« Use this to encode variables in E2LIN2 (NP-hard to approx. with
factor 11/12).

»(00@®@0 @00

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.

« Observe: d < some threshold — inbalanced “phase”.

« E(a, B) := Expected # of indset s.t. anin left, Bn in right.
« & takes maximum at « # f3.

« Use this to encode variables in E2LIN2 (NP-hard to approx. with
factor 11/12).

»(00@®@0 @00

« Didn’t prove concentration (only Markov’s inequality).

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.

« Observe: d < some threshold — inbalanced “phase”.

« E(a, B) := Expected # of indset s.t. anin left, Bn in right.
« & takes maximum at « # f3.

« Use this to encode variables in E2LIN2 (NP-hard to approx. with
factor 11/12).

»(00@®@0 @00

« Didn’t prove concentration (only Markov’s inequality).

[MWW09, CCGL12]: Locally tree-like. — (non-)uniqueness threshold of Gibbs measure over
Ta.

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.

« Observe: d < some threshold — inbalanced “phase”.

« E(a, B) := Expected # of indset s.t. anin left, Bn in right.
« & takes maximum at « # f3.

« Use this to encode variables in E2LIN2 (NP-hard to approx. with
factor 11/12).

»(00@®@0 @00

« Didn’t prove concentration (only Markov’s inequality).

[MWW09, CCGL12]: Locally tree-like. — (non-)uniqueness threshold of Gibbs measure over
Ta.

« (Mixing time behaves differently, though.)

7/15

History

[DFJ02]: Hardness of approximating Hard-core model with A = 1 (i.e., #IND), A > 25.

« Gadget: Random (d-regular) bipartite graph G ~ G, , 4.

« Observe: d < some threshold — inbalanced “phase”.

« E(a, B) := Expected # of indset s.t. anin left, Bn in right.
« & takes maximum at « # f3.

« Use this to encode variables in E2LIN2 (NP-hard to approx. with
factor 11/12).

»(00@®@0 @00

« Didn’t prove concentration (only Markov’s inequality).

[MWW09, CCGL12]: Locally tree-like. — (non-)uniqueness threshold of Gibbs measure over
Ta.

« (Mixing time behaves differently, though.)

« Detailed analysis over the second moment.

7/15

History

[Sly10]: Hardness of #IND for A > 6.

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

» Gadget phases:
+ Privte ll=p", Privk el =p~. v

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:
+ Privt el =p*, PrivR € 1] -, v

p
— Prlvte = p Privke 1] = pt. o >

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:

+ Privte ll=p", Privk el =p~. v v
— Privtell=p~,PrivR el =p™. { L

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:
+ Privte ll=p", Privk el =p~.
— Privtell=p~,PrivR el =p™.

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:
+ Privte ll=p", PrivRk e ll =p~
— Privtell=p~,PrivR el =p™.

« Sample I and I’ respectively.

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:
+ Privte ll=p", PrivRk e ll =p~
— Privtell=p~,PrivR el =p™.
« Sample I and I’ respectively.

« Possibility / and I’ are valid at v:

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

» Gadget phases:
+ Privte ll=p", PrivRk e ll =p~
— Privtell=p~,PrivR el =p™.
« Sample I and I’ respectively.
« Possibility / and I’ are valid at v:
« Phases agree: (1— (p")?)(1— (p)?).

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

» Gadget phases:
+ Privte ll=p", PrivRk e ll =p~
— Privtell=p~,PrivR el =p™.
« Sample I and I’ respectively.
« Possibility / and I’ are valid at v:
« Phases agree: (1— (p")?)(1— (p)?).

« Phases disagree: (1— p"p~)2

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:
+ Privte ll=p", PrivRk e ll =p~
— Privtell=p~,PrivR el =p™.

« Sample I and I’ respectively.

Possibility / and I’ are valid at v:

« Phases agree: (1— (p")?)(1— (p)?).
« Phases disagree: (1— p"p~)2

« (Spins of v’s are almost independent. Phases take +/— with probability almost 1/2.)

8/15

History

[Sly10]: Hardness of #IND for A > 6.

« Modify the gadget (nearly d-regular) allowing extra edges outwards.
« Even more tedious analysis over second moment.

« Reduction from Max-Cur.

« Gadget phases:
+ Privte ll=p", PrivRk e ll =p~
— Privtell=p~,PrivR el =p™.
« Sample I and I’ respectively.
« Possibility / and I’ are valid at v:
« Phases agree: (1— (p")?)(1— (p)?).
« Phases disagree: (1— p"p~)2

« (Spins of v’s are almost independent. Phases take +/— with probability almost 1/2.)
e pt#£pT = (1—(p")2)(1—(p)*) < (1—p*Tp)2 Neighbour phases prefer to differ.

8/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ Gpnawrt. n

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.
« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ Gpnawrt. n

« W,: exponent in second moment.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).
[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.
« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ Gpnawrt. n
« W,: exponent in second moment.

« Dominant phase: maximizer of ¥;(c, 3).

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ SGnnd wrt. n.
« W,: exponent in second moment.

« Dominant phase: maximizer of ¥;(c, 3).

« Connect ¥; and ¥, for dominant phases. — Only need to care ¥;.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ SGnnd wrt. n.
« W,: exponent in second moment.

« Dominant phase: maximizer of ¥;(c, 3).

« Connect ¥; and ¥, for dominant phases. — Only need to care ¥;.

Theorem ([GSV15])

Suppose A > 3 and B is an ergodic interaction matrix of an antiferromagnetic spin system. If the
dominant phases («v, 3) satisfy o # (3, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate Zg(G) on an n-vertex triangle-free A-regular graph G.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ SGnnd wrt. n.
« W,: exponent in second moment.

« Dominant phase: maximizer of ¥;(c, 3).

« Connect ¥; and ¥, for dominant phases. — Only need to care ¥;.

Theorem ([GSV15])

Suppose A > 3 and B is an ergodic interaction matrix of an antiferromagnetic spin system. If the
dominant phases («v, 3) satisfy o # (3, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate Zg(G) on an n-vertex triangle-free A-regular graph G.

Ergodic: B is irreducible and aperiodic.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ SGnnd wrt. n.
« W,: exponent in second moment.

« Dominant phase: maximizer of ¥;(c, 3).

« Connect ¥; and ¥, for dominant phases. — Only need to care ¥;.

Theorem ([GSV15])

Suppose A > 3 and B is an ergodic interaction matrix of an antiferromagnetic spin system. If the
dominant phases («v, 3) satisfy o # (3, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate Zg(G) on an n-vertex triangle-free A-regular graph G.

antiferromagnetic: A,(B) < 0.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ SGnnd wrt. n.
« W,: exponent in second moment.

« Dominant phase: maximizer of ¥;(c, 3).

« Connect ¥; and ¥, for dominant phases. — Only need to care ¥;.

Theorem ([GSV15])

Suppose A > 3 and B is an ergodic interaction matrix of an antiferromagnetic spin system. If the
dominant phases («, 3) satisfy o # (3, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate Zg(G) on an n-vertex triangle-free A-regular graph G.

Permutation symmetric: dominant phases can be obtained from each other, by permutating

spins while leaving B invariant, or switch «, 3, or both.

9/15

History

[SS14, GSV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GSV15]: General antiferromagnetic g-spin.

- Phase «, 3 € [0, 1]9: fraction of each colour.

« W¥;: the exponential growth of the expectation of Zg’ﬁ(G), G~ SGnnd wrt. n.
« W,: exponent in second moment.

« Dominant phase: maximizer of ¥;(c, 3).

« Connect ¥; and ¥, for dominant phases. — Only need to care ¥;.

Theorem ([GSV15])

Suppose A > 3 and B is an ergodic interaction matrix of an antiferromagnetic spin system. If the
dominant phases («, 3) satisfy o # (3, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate Zg(G) on an n-vertex triangle-free A-regular graph G.

Hessian: the Hessian of Wy is negative-definite.

9/15

From first moment to tree recursion

W, has explicit form... but inconvenient to work with!

10/15

From first moment to tree recursion

W, has explicit form... but inconvenient to work with!

« They introduce a simpler function (r, c € R;O):
r' Bc

D(r,c):=Aln
[Iellpllell,

where p=A/(A—1).

10/15

From first moment to tree recursion

W, has explicit form... but inconvenient to work with!

« They introduce a simpler function (r, c € R;O):
r' Bc

D(r,c):=Aln
rllpllellp

where p=A/(A—1).

« There’s a one-to-one mapping (up to scaling) between critical points of ¥; and ®; values are
equal at these points. No local maximal at boundaries for either function.

10/15

From first moment to tree recursion

W, has explicit form... but inconvenient to work with!

« They introduce a simpler function (r, c € R;O):
r' Bc

D(r,c):=Aln
rllpllellp

where p=A/(A—1).

« There’s a one-to-one mapping (up to scaling) between critical points of ¥; and ®; values are
equal at these points. No local maximal at boundaries for either function.

Critical points of @ satisifies (d :== A — 1):
d d

x> BiG| i Go| D BiR

j€lql i€q]

10/15

From first moment to tree recursion

W, has explicit form... but inconvenient to work with!

« They introduce a simpler function (r, c € R;O):
r' Bc

D(r,c):=Aln
rllpllellp

where p=A/(A—1).

« There’s a one-to-one mapping (up to scaling) between critical points of ¥; and ®; values are
equal at these points. No local maximal at boundaries for either function.

Critical points of @ satisifies (d :== A — 1):
d d

x> BiG| i Go| D BiR

j€lql i€q]

“Tree recursion”: Recursion for marginals on infinite d-ary tree. R: odd layer; C: even layer.

10/15

From first moment to tree recursion

W, has explicit form... but inconvenient to work with!

« They introduce a simpler function (r, c € R;O):
r' Bc

D(r,c):=Aln
rllpllellp

where p=A/(A—1).

« There’s a one-to-one mapping (up to scaling) between critical points of ¥; and ®; values are
equal at these points. No local maximal at boundaries for either function.

Critical points of @ satisifies (d :== A — 1):
d d

x> BiG| i Go| D BiR

j€lql i€q]

“Tree recursion”: Recursion for marginals on infinite d-ary tree. R: odd layer; C: even layer.

Jacobian stable fixpoints of tree recursion <= Hessian local maxima of ¥;.

10/15

Dominant phase analysis

i.e., the proof

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.

Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, C;, i = 1,2, 3.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!

« Relaxation: allow g;’s to take any nonnegative real.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!
« Relaxation: allow g;’s to take any nonnegative real. (Need some extra check at boundary)

« Perturb g;’s to jump out local maxima.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!
« Relaxation: allow g;’s to take any nonnegative real. (Need some extra check at boundary)

« Perturb g;’s to jump out local maxima.

(g1, 2, g3)-type fixpoint: g; > 0 entries take R; (C)) in r (c); Ri # R;, C; # C; for i # j, q;j > 0.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!
« Relaxation: allow g;’s to take any nonnegative real. (Need some extra check at boundary)

« Perturb g;’s to jump out local maxima.
(g1, 2, g3)-type fixpoint: g; > 0 entries take R; (C)) in r (c); Ri # R;, C; # C; for i # j, q;j > 0.

Candidate maximizers via perturbation argument:

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!
« Relaxation: allow g;’s to take any nonnegative real. (Need some extra check at boundary)
« Perturb g;’s to jump out local maxima.

(g1, 2, g3)-type fixpoint: g; > 0 entries take R; (C)) in r (c); Ri # R;, C; # C; for i # j, q;j > 0.

Candidate maximizers via perturbation argument:

+ (g/2,9/2,0) with R /R, = C,/C;.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!
« Relaxation: allow g;’s to take any nonnegative real. (Need some extra check at boundary)
« Perturb g;’s to jump out local maxima.
(g1, 2, g3)-type fixpoint: g; > 0 entries take R; (C)) in r (c); Ri # R;, C; # C; for i # j, q;j > 0.
Candidate maximizers via perturbation argument:
. (q/2, q/2, 0) with R1/R2 - Cz/C1.
- (g,0,0).

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!
« Relaxation: allow g;’s to take any nonnegative real. (Need some extra check at boundary)
« Perturb g;’s to jump out local maxima.
(g1, 2, g3)-type fixpoint: g; > 0 entries take R; (C)) in r (c); Ri # R;, C; # C; for i # j, q;j > 0.
Candidate maximizers via perturbation argument:
. (q/2, q/2, 0) with R1/R2 - Cz/C1.
+ (g,0,0). — Ruled out by checking stability.

11/15

Proper g-colourings ([GSV15])

@ is still not easy to analyse:

« Each candidate maximizer of @ is local maxima. — Cannot perturb R;, C;’s;

« O has 2q variables.
Observe: any fixpoint of the tree recursion for g-colourings has support size < 3 in each side.

« New variables: g;, R;, Ci, i = 1, 2, 3. Rewrite ®. — Optimization with only 9 variables!
« Relaxation: allow g;’s to take any nonnegative real. (Need some extra check at boundary)
« Perturb g;’s to jump out local maxima.
(g1, 2, g3)-type fixpoint: g; > 0 entries take R; (C)) in r (c); Ri # R;, C; # C; for i # j, q;j > 0.
Candidate maximizers via perturbation argument:

. (q/2, q/2, 0) with R1/R2 - Cz/C1.
+ (g,0,0). — Ruled out by checking stability.

The reason why they can only deal with even q.

11/15

Our case

Recall:

Proper g-colouring Our case
ot ot
0 1 1
t 0 1
0 1
t 10
11 0 N
t 1 1

12/15

Our case

Recall:
Proper g-colouring Our case
ot ot t
0 1 1
t 0 1 1
0 1
t 10 1
11 0 '
t 1 1 0

« r and c has support size < 3 respectively (except Ry and Cy).

12/15

Our case

Recall:
Proper g-colouring Our case
ot ot t
0 1 1
t 0 1 1
0 1
t 10 1
11 0 '
t 1 1 0

« r and c has support size < 3 respectively (except Ry and Cy).

« 11 variables after rewriting ©.

12/15

Our case

Recall:
Proper g-colouring Our case
ot ot t
0 1 1
t 0 1 1
0 1
t 10 1
11 0 '
t 1 1 0

« r and c has support size < 3 respectively (except Ry and Cy).

« 11 variables after rewriting ©.

Maximizer behaves differently for d = A — 1 above or below some threshold.

12/15

Our case

Recall:
Proper g-colouring Our case
ot ot t
0 1 1
t 0 1 1
0 1
t 10 1
11 0 '
t 1 1 0

« r and c has support size < 3 respectively (except Ry and Cy).

« 11 variables after rewriting ©.

Maximizer behaves differently for d = A — 1 above or below some threshold.

« In fact, [GSV15] considers Potts with b < %.

12/15

Guess the fixpoints! (d = 5g¥)

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3?

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?

. (q/2, q/2, 0) with Ro/R] = Co/C3.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x
Support size 2?
+ (q/2,9/2,0) with Ry/Ry = G/ Cs.
cq=6k=3
r = 0.9863, 0.0045, 0.0045, 0.0045, 0.0001, 0.0001, 0.000T1;
¢ = 0.9863,0.0001, 0.0001, 0.0001, 0.0045, 0.0045, 0.0045.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?

. (q/2, q/2, 0) with Ro/R] = Co/C3.

« Unique and stable.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?

. (q/2, q/2, 0) with Ro/R] = Co/C3.

« Unique and stable.

Support size 1 (i.e., (g, 0,0))?

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x
Support size 2?
. (q/2, q/2, 0) with Ro/R] = Co/C3.

« Unique and stable.

Support size 1 (i.e., (g, 0,0))?

2 ot t -t
t 0 1 1
t 1 0 1
t 11 0

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x
Support size 2?
. (q/2, q/2, 0) with Ro/R] = Co/C3.

« Unique and stable.

Support size 1 (i.e., (g, 0,0))?

t? t t

t 0 1 1

t 0 1 N o
. ko ok

t 1 1 0

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?

. (q/2, q/2, O) with Ro/R] = Co/C3.

« Unique and stable.
Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?

. (q/2, q/2, O) with Ro/R] = Co/C3.

« Unique and stable.
Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?
- (g/2,q/2,0) with Ry/R, = C,/Cs.
« Unique and stable.

Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = Cy/Cy,
r=c¢=0.993,0.001,0.001,0.001,0.001, 0.001, 0.001.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?
- (g/2,q/2,0) with Ry/R, = C,/Cs.
« Unique and stable.

Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = C,/Cy, unstable.)
r=c¢=0.993,0.001,0.001,0.001,0.001, 0.001, 0.001.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2?
- (g/2,q/2,0) with Ry/R, = C,/Cs.
« Unique and stable.

Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!
 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = C,/Cy, unstable.)

« ... and inbalanced ones (Q", Q7), (Q, Q") in non-uniqueness region.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x
Support size 2?

+ (q/2,9/2,0) with Ry/Ry = G/ Cs.

« Unique and stable.
Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = C,/Cy, unstable.)

« ... and inbalanced ones (Q", Q7), (Q, Q") in non-uniqueness region.

« (correspond to Ry/R; # Co/Cy,
r = 0.9997,0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.000T,
c = 0.9732,0.0045, 0.0045, 0.0045, 0.0045, 0.0045, 0.0045.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x
Support size 2?

+ (q/2,9/2,0) with Ry/Ry = G/ Cs.

« Unique and stable.
Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = C,/Cy, unstable.)

« ... and inbalanced ones (Q", Q7), (Q, Q") in non-uniqueness region.

« (correspond to Ry/R; # Cy/Cy, stable.)
r = 0.9997,0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.000T,
c = 0.9732,0.0045, 0.0045, 0.0045, 0.0045, 0.0045, 0.0045.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x

Support size 2? v/
- (g/2,q/2,0) with Ry/R, = C,/Cs.
« Unique and stable.

Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = C,/Cy, unstable.)

« ... and inbalanced ones (Q", Q7), (Q, Q") in non-uniqueness region.

« (correspond to Ry/R; # Cy/Cy, stable.)

Use a more careful interpolate-and-perturb argument to show 2-supported is global maxima.

13/15

Guess the fixpoints! (d = 5g¥)

Support size 3? x
Support size 2? v/

+ (q/2,9/2,0) with Ry/Ry = G/ Cs.

« Unique and stable.
Support size 1 (i.e., (g, 0,0))?

« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = C,/Cy, unstable.)

« ... and inbalanced ones (Q", Q7), (Q, Q") in non-uniqueness region.

« (correspond to Ry/R; # Cy/Cy, stable.)

Use a more careful interpolate-and-perturb argument to show 2-supported is global maxima.

« (g,0,0) with Ry/R; # Cy/C; can be regarded as a limit of (g, g2, 0) fixpoint.

13/15

Guess the fixpoints! (d = g¥)

Support size 3?
Support size 2?

Support size 1?

14/15

Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2?

Support size 1?

14/15

Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2? x ((q/2, g/2,0) with Ry/R; = Cy/C3 no more exists.)

Support size 1?

14/15

Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2? x ((q/2, g/2,0) with Ry/R; = Cy/C3 no more exists.)

Support size 1?

« Lies in uniqueness region.

14/15

Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2? x ((q/2, g/2,0) with Ry/R; = Cy/C3 no more exists.)

Support size 1?

« Lies in uniqueness region.

« Only solution: (Q*, Q*).

14/15

Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2? x ((q/2, g/2,0) with Ry/R; = Cy/C3 no more exists.)
Support size 1?

« Lies in uniqueness region.

« Only solution: (Q*, Q*).

« Stable in this case.

14/15

Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2? x ((q/2, g/2,0) with Ry/R; = Cy/C3 no more exists.)
Support size 1?

« Lies in uniqueness region.

« Only solution: (Q*, Q*).

« Stable in this case.

« Translation-invariant.

r =c = 0.984,0.003,0.003, 0.003,0.003, 0.003, 0.003.

14/15

Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2? x ((q/2, g/2,0) with Ry/R; = Cy/C3 no more exists.)
Support size 1?

« Lies in uniqueness region.

« Only solution: (Q*, Q*).

« Stable in this case.

« Translation-invariant.

r =c = 0.984,0.003,0.003, 0.003,0.003, 0.003, 0.003.

Dominant phase satisfies & = 3. Cannot apply [GSV15].

14/15

Future directions

Hardness side: handle odd g.

15/15

Future directions

Hardness side: handle odd g.

« More detailed comparison between candidates? (Meanwhile improving [GSV15]?)

15/15

Future directions

Hardness side: handle odd g.

« More detailed comparison between candidates? (Meanwhile improving [GSV15]?)

« New gadgets from graph to hypergraph?

15/15

Future directions

Hardness side: handle odd g.

« More detailed comparison between candidates? (Meanwhile improving [GSV15]?)
« New gadgets from graph to hypergraph?

+ Analyse asymptotically when, say, A > q*5'€?

15/15

Future directions

Hardness side: handle odd g.

« More detailed comparison between candidates? (Meanwhile improving [GSV15]?)
« New gadgets from graph to hypergraph?

+ Analyse asymptotically when, say, A > q*5'€?

Algorithmic side: close the gap between ¢/ and ¢X/2.

15/15

Future directions

Hardness side: handle odd g.

« More detailed comparison between candidates? (Meanwhile improving [GSV15]?)

« New gadgets from graph to hypergraph?

+ Analyse asymptotically when, say, A > q*5'€?

Algorithmic side: close the gap between ¢/ and ¢X/2.

« Which one is the computational transition threshold? (We guess 1/2.)

LLL

qK/3 qK/2 qK A

Hypergraph Colouring

15/15

Thank youl!

arXiv: 2107.05486

	Reduction
	Inapproximability of spin systems
	Dominant phase analysis i.e., the proof
	Summary

