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Lovász Local Lemma

A set of events, each occurs with probability p and depends on at most D other events.

Lemma (Lovász Local Lemma)
If ep(D + 1) 6 1, then there is a non-zero probability that no event happens.

The “canonical” problem (originally considered in [EL75]): hypergraph colouring.

• K -uniform: K vertices in each hyperedge;

• ∆-degree: each vertex appears in 6 ∆ hyperedges;

• Event: a hyperedge is monochromatic;

• p = 1/qK−1
, D = K∆− 1;

• LLL condition: ∆ 6 qK−1

eK

Other kinds of LLL-type problems:

• Boolean K -SAT;
• Constraint Satisfaction Problem;

• …
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Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?

⇐Main topic of the work.

2 / 15



Algorithmic LLL and Sampling/Counting LLL

Proof of LLL is non-constructive!

LLL condition→ construct a solution e�iciently?

• Algorithmic LLL [MT10]: e�iciently find a solution when LLL holds.

• Their output is far from being uniform.

Intractability region of finding a solution vs. LLL?

• For K -SAT, LLL is asymptotically tight [GST16].

LLL condition→ approximately sampling a (uniform) solution / counting solutions?

A lot of progress from algorithmic side! Recent result by [HSW21] (even perfect samplers):

LLL-type problem Algorithmic bound LLL condition

Hypergraph Colourings ∆ . qK/3 ∆ . qK

Boolean K -SAT ∆ . 2
0.175K ∆ . 2

K

General Atomic CSPs p0.175∆ . 1 p∆ . 1

Intractability region of sampling / counting vs. LLL?⇐Main topic of the work.
2 / 15



Is hardness transition the same for counting and searching?

∆2
K

2
0.175K

2
K/2

K -SAT

LLL

Theorem ([BGGGS16])

If ∆ & 2
K/2, then it is NP-hard to sample a satisfying assignment from K-CNF with variable degree

6 ∆, even when there is no negation in the formula (aka monotone).

Not true for K -SAT!
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Our results

∆qK

qK/3 qK/2

Hypergraph Colouring

LLL

Algorithmic bound closer to LLL … Chance for hardness transition to coincide at LLL�

Hardness for searching takes place near LLL indeed, again …

… but searching and counting do not coincide either! (at least for even q)
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∆qKqK/3

qK/2

Hypergraph Colouring

LLL

Algorithmic bound closer to LLL … Chance for hardness transition to coincide at LLL�

Hardness for searching takes place near LLL indeed, again …

Theorem
Let q,K > 2 be integers with (q,K) 6= (2, 2). It is NP-hard to find a q-colouring on K-uniform
simple hypergraphs of maximal degree at most ∆, when ∆ > 2KqK ln q + 2q.

… but searching and counting do not coincide either! (at least for even q)
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Our results

∆qKqK/3 qK/2

Hypergraph Colouring

LLL

Algorithmic bound closer to LLL … Chance for hardness transition to coincide at LLL�

Hardness for searching takes place near LLL indeed, again …

… but searching and counting do not coincide either! (at least for even q)

Theorem

Let q > 4 be even, K > 4 be even, and ∆ > 5qK/2. It is NP-hard to approximate the number of
proper q-colourings in n-vertex K-uniform hypergraphs of maximum degree at most ∆, even within
a factor of 2cn for some constant c(q,K) > 0.
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Reduction



q-Spin system

Define q-spin system over graphs:

• Spins: [q] = {1, 2, 3, · · · , q}.
• Configuration: σ : V → [q];

• B: symmetric q × q matrix with nonnegative entries;

• Weight of σ: w(σ) :=
∏

(u,v)∈E B(σ(u),σ(v));
• … with external field: w(σ) :=

∏
u∈v f (σ(u))

∏
(u,v)∈E B(σ(u),σ(v))

• Partition function: ZB(G) :=
∑
σ w(σ).

1 2

13

1

1

1

1

b

Examples:

Po�s model Proper q-colouring Ising model Hard-core Model

B


b 1 · · · 1

1 b · · · 1

.

.

.

.

.

.

.
.
.

.

.

.

1 1 · · · b



0 1 · · · 1

1 0 · · · 1

.

.

.

.

.

.

.
.
.

.

.

.

1 1 · · · 0


[
b 1

1 b

] [
1 1

1 0

]

f = [1, λ] f = [1, λ]
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• … with external field: w(σ) :=
∏

u∈v f (σ(u))
∏

(u,v)∈E B(σ(u),σ(v))

• Partition function: ZB(G) :=
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Reduction for counting hypergraph colourings

B =


t2 t t · · · t
t 0 1 · · · 1

t 1 0 · · · 1

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

t 1 1 · · · 0


t = (qk − q)1/∆.

• Consider ∆-regular graph G.

• Each vertex v of G→ k new vertices Hv in HG ; each edge→ hyperedge.

• HG is ∆-regular and K = 2k-uniform.

• Consider a proper q-colouring on HG :

• Hv has the same colour s ∈ [q]→ assign v with spin s.
• Hv has mixed colours→ assign v with spin 0.

• It turns out ZB(G) = #HyperCol(HG).
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Inapproximability
of spin systems



History

[DFJ02]: Hardness of approximating Hard-core model with λ = 1 (i.e.,#Ind), ∆ > 25.

• Gadget: Random (d-regular) bipartite graph G ∼ Gn,n,d .

• Observe: d < some threshold→ inbalanced “phase”.

• E(α,β) := Expected # of indset s.t. αn in le�, βn in right.

• E takes maximum at α 6= β.
• Use this to encode variables in E2LIN2 (NP-hard to approx. with

factor 11/12).

• Didn’t prove concentration (only Markov’s inequality).

α β

[MWW09, CCGL12]: Locally tree-like.→ (non-)uniqueness threshold of Gibbs measure over

T∆.

• (Mixing time behaves di�erently, though.)

• Detailed analysis over the second moment.
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History

[Sly10]: Hardness of #Ind for ∆ > 6.

• Modify the gadget (nearly d-regular) allowing extra edges outwards.

• Even more tedious analysis over second moment.

• Reduction from Max-Cut.

• Gadget phases:

+ Pr[vL ∈ I] = p+, Pr[vR ∈ I] = p−.
− Pr[vL ∈ I] = p−, Pr[vR ∈ I] = p+.

• Sample I and I ′ respectively.

• Possibility I and I ′ are valid at v :

• Phases agree: (1− (p+)2)(1− (p−)2).
• Phases disagree: (1− p+p−)2.

vL

vR

v ′L

v ′R

• (Spins of v’s are almost independent. Phases take +/− with probability almost 1/2.)

• p+ 6= p− =⇒ (1− (p+)2)(1− (p−)2) < (1− p+p−)2. Neighbour phases prefer to di�er.
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History

[SS14, GŠV16]: General antiferromagnetic Ising (2-spin) (with external field).

[GŠV15]: General antiferromagnetic q-spin.

• Phase α,β ∈ [0, 1]q : fraction of each colour.

• Ψ1: the exponential growth of the expectation of Zα,β
B (G), G ∼ Gn,n,d w.r.t. n.

• Ψ2: exponent in second moment.

• Dominant phase: maximizer of Ψ1(α,β).

• Connect Ψ1 and Ψ2 for dominant phases.→ Only need to care Ψ1.

Theorem ([GŠV15])
Suppose ∆ > 3 and B is an ergodic interaction matrix of an antiferromagnetic spin system. If the
dominant phases (α,β) satisfy α 6= β, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate ZB(G) on an n-vertex triangle-free ∆-regular graph G.
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[GŠV15]: General antiferromagnetic q-spin.

• Phase α,β ∈ [0, 1]q : fraction of each colour.

• Ψ1: the exponential growth of the expectation of Zα,β
B (G), G ∼ Gn,n,d w.r.t. n.

• Ψ2: exponent in second moment.

• Dominant phase: maximizer of Ψ1(α,β).

• Connect Ψ1 and Ψ2 for dominant phases.→ Only need to care Ψ1.

Theorem ([GŠV15])
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Ergodic: B is irreducible and aperiodic.
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[GŠV15]: General antiferromagnetic q-spin.

• Phase α,β ∈ [0, 1]q : fraction of each colour.

• Ψ1: the exponential growth of the expectation of Zα,β
B (G), G ∼ Gn,n,d w.r.t. n.

• Ψ2: exponent in second moment.

• Dominant phase: maximizer of Ψ1(α,β).

• Connect Ψ1 and Ψ2 for dominant phases.→ Only need to care Ψ1.

Theorem ([GŠV15])
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antiferromagnetic: λ2(B) < 0.
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dominant phases (α,β) satisfy α 6= β, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate ZB(G) on an n-vertex triangle-free ∆-regular graph G.

Permutation symmetric: dominant phases can be obtained from each other, by permutating

spins while leaving B invariant, or switch α,β, or both.
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Hessian: the Hessian of Ψ1 is negative-definite.
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From first moment to tree recursion

Ψ1 has explicit form… but inconvenient to work with!

• They introduce a simpler function (r, c ∈ Rq
>0
):

Φ(r, c) := ∆ ln
r>Bc
‖r‖p‖c‖p

where p = ∆/(∆− 1).

• There’s a one-to-one mapping (up to scaling) between critical points of Ψ1 andΦ; values are

equal at these points. No local maximal at boundaries for either function.

Critical points of Φ satisifies (d := ∆− 1):

Ri ∝

∑
j∈[q]

BijCj

d

; Cj ∝

∑
i∈[q]

BijRi

d

.

“Tree recursion”: Recursion for marginals on infinite d-ary tree. R: odd layer; C: even layer.

Jacobian stable fixpoints of tree recursion ⇐⇒ Hessian local maxima of Ψ1.
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Dominant phase analysis
i.e., the proof



Proper q-colourings ([GŠV15])

Φ is still not easy to analyse:

• Each candidate maximizer of Φ is local maxima.→ Cannot perturb Ri,Ci’s;

• Φ has 2q variables.

Observe: any fixpoint of the tree recursion for q-colourings has support size 6 3 in each side.

• New variables: qi,Ri,Ci, i = 1, 2, 3. Rewrite Φ.→ Optimization with only 9 variables!

• Relaxation: allow qi’s to take any nonnegative real. (Need some extra check at boundary)

• Perturb qi’s to jump out local maxima.

(q1, q2, q3)-type fixpoint: qi > 0 entries take Ri (Ci) in r (c); Ri 6= Rj , Ci 6= Cj for i 6= j, qi,j > 0.

Candidate maximizers via perturbation argument:

• (q/2, q/2, 0) with R1/R2 = C2/C1.

• (q, 0, 0).→ Ruled out by checking stability.

The reason why they can only deal with even q.
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• r and c has support size 6 3 respectively (except R0 and C0).

• 11 variables a�er rewriting Φ.

Maximizer behaves di�erently for d = ∆− 1 above or below some threshold.

• In fact, [GŠV15] considers Po�s with b < ∆−q
∆

.
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Use a more careful interpolate-and-perturb argument to show 2-supported is global maxima.

• (q, 0, 0) with R0/R1 6= C0/C1 can be regarded as a limit of (q1, q2, 0) fixpoint.
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Dominant phase satisfies α = β. Cannot apply [GŠV15].
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Future directions

Hardness side: handle odd q.
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• New gadgets from graph to hypergraph?

• Analyse asymptotically when, say, ∆ & q0.51K ?

Algorithmic side: close the gap between qK/3 and qK/2.

• Which one is the computational transition threshold? (We guess 1/2.)

∆qKqK/3 qK/2

Hypergraph Colouring

LLL

15 / 15



Future directions

Hardness side: handle odd q.

• More detailed comparison between candidates? (Meanwhile improving [GŠV15]?)
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Thank you!

arXiv: 2107.05486
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