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Other kinds of LLL-type problems:

« Boolean K-SAT;
« Constraint Satisfaction Problem;
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LLL-type problem Algorithmic bound | LLL condition
Hypergraph Colourings A< i3 A< gf
Boolean K-SAT A < 20175K A <K
General Atomic CSPs p’1PA < pA <1

Intractability region of sampling / counting vs. LLL? <= Main topic of the work.
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IfA > 25/2, then it is NP-hard to sample a satisfying assignment from K-CNF with variable degree
< A, even when there is no negation in the formula (aka monotone).
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qK/3 qK A
Hypergraph Colouring

Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??
Hardness for searching takes place near LLL indeed, again ...

Theorem
Let q, K > 2 be integers with (g, K) # (2, 2). It is NP-hard to find a q-colouring on K-uniform
simple hypergraphs of maximal degree at most A, when A > 2Kq® In q + 2q.
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Our results

LLL

qk/3 qk/? g A
Hypergraph Colouring

Algorithmic bound closer to LLL ... Chance for hardness transition to coincide at LLL??
Hardness for searching takes place near LLL indeed, again ...
... but searching and counting do not coincide either! (at least for even q)

Theorem

Let g > 4 be even, K > 4 be even, and A > 5qk/2, It is NP-hard to approximate the number of
proper q-colourings in n-vertex K-uniform hypergraphs of maximum degree at most A, even within
a factor of 2°" for some constant c(q, K) > 0.
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« B: symmetric g X ¢ matrix with nonnegative entries;
« Weight of 0: w(0) := [ ], ,)er B(o(u), o(v));
+ ... with external field: w(o) := [[,c, f(0(u)) [ ](,,)ce Blo(u), o(v))

« Partition function: Zg(G) := }_, w(0).
Examples:

Potts model Proper g-colouring | Ising model | Hard-core Model
b 1 - 1 0 1 -+ 1
1 b - 1 1 0 --- 1 b 1 1 1

B | |. . : - )
T TR 1 b 10
1 1 b 1 1 0

f=0A f=0A
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Reduction for counting hypergraph colourings

£ ot t t

£t 0 1 1

B—|t 1 0 1

:: £1 1 0
t=(q"—q""

« Consider A-regular graph G.
« Each vertex v of G — k new vertices H, in Hg; each edge — hyperedge.
« Hg is A-regular and K = 2k-uniform.

« Consider a proper g-colouring on Hg:

+ H, has the same colour s € [q] — assign v with spin s.

+ H, has mixed colours — assign v with spin 0.

« It turns out Zg(G) = #HypPerCoL(Hg).
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« Use this to encode variables in E2LIN2 (NP-hard to approx. with
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»(00@®@0 @00

« Didn’t prove concentration (only Markov’s inequality).

[MWW09, CCGL12]: Locally tree-like. — (non-)uniqueness threshold of Gibbs measure over
Ta.

« (Mixing time behaves differently, though.)

« Detailed analysis over the second moment.
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« Phases agree: (1— (p")?)(1— (p)?).
« Phases disagree: (1— p"p~ )2

« (Spins of v’s are almost independent. Phases take +/— with probability almost 1/2.)
e pt#£pT = (1—(p")2)(1—(p)*) < (1—p*Tp )2 Neighbour phases prefer to differ.
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Suppose A > 3 and B is an ergodic interaction matrix of an antiferromagnetic spin system. If the
dominant phases («, 3) satisfy o # (3, are permutation symmetric and Hessian dominant, then it
is NP-hard to approximate Zg(G) on an n-vertex triangle-free A-regular graph G.

Hessian: the Hessian of Wy is negative-definite.
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Critical points of @ satisifies (d :== A — 1):
d d

x> BiG| i Go| D BiR

j€lql i€q]

“Tree recursion”: Recursion for marginals on infinite d-ary tree. R: odd layer; C: even layer.

Jacobian stable fixpoints of tree recursion <= Hessian local maxima of ¥;.
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Candidate maximizers via perturbation argument:

. (q/2, q/2, 0) with R1/R2 - Cz/C1.
+ (g,0,0). — Ruled out by checking stability.

The reason why they can only deal with even q.
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0 1
t 10 1
11 0 '
t 1 1 0

« r and c has support size < 3 respectively (except Ry and Cy).

« 11 variables after rewriting ©.

Maximizer behaves differently for d = A — 1 above or below some threshold.

« In fact, [GSV15] considers Potts with b < %.
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« Behaves like a 2-spin due to the “mixed” colour!

 General antiferro 2-spin: balanced solution (Q*, Q*),

« (corresponds to Ry/R; = C,/Cy, unstable.)

« ... and inbalanced ones (Q", Q7 ), (Q, Q") in non-uniqueness region.

« (correspond to Ry/R; # Cy/Cy, stable.)

Use a more careful interpolate-and-perturb argument to show 2-supported is global maxima.

« (g,0,0) with Ry/R; # Cy/C; can be regarded as a limit of (g, g2, 0) fixpoint.
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Guess the fixpoints! (d = g¥)

Support size 3? x
Support size 2? x ((q/2, g/2,0) with Ry/R; = Cy/C3 no more exists.)
Support size 1?

« Lies in uniqueness region.

« Only solution: (Q*, Q*).

« Stable in this case.

« Translation-invariant.

r =c = 0.984,0.003,0.003, 0.003,0.003, 0.003, 0.003.

Dominant phase satisfies & = 3. Cannot apply [GSV15].
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Future directions

Hardness side: handle odd g.

« More detailed comparison between candidates? (Meanwhile improving [GSV15]?)

« New gadgets from graph to hypergraph?

+ Analyse asymptotically when, say, A > q*5'€?

Algorithmic side: close the gap between ¢/ and ¢X/2.

« Which one is the computational transition threshold? (We guess 1/2.)

LLL

qK/3 qK/2 qK A

Hypergraph Colouring
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Thank youl!

arXiv: 2107.05486
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