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Power of Modular Counting

ACO[m]: Unbounded fan-in constant-depth circuits with AND, OR,
NOT and MOD™ gates.

Razborov-Smolensky: MOD? ¢ AC°[2].
What about AC°[6]? We do not know whether AC°[6] © NP or not!

Currently best upper bound of modular counting circuits:
Acc? 2 NEXP, which builds on Williams' breakthrough algorithmic
method for circuit lower bounds [Williams, 2011].
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Definition (Degree)

The degree (resp. modulo-m degree) of a Boolean function f, denoted
by deg(f) (resp. deg,,(f)), is the degree of the polynomial that
represents f over Z (resp. Z,).

deg(f) is polynomially related to many other complexity measures, e.g.,
block sensitivity, decision tree depth, and sensitivity [Huang, 2019].

What about deg,,, (f)?
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deg,,(f) vs deg(f)

Conjecture

For any Boolean function f,

deg(f) = O (poly (deg,,(f))) -

Best separation so far is quadratic [Li and Sun, 2017].

> There exists a sequence of Boolean functions {f,,} with
degpq(fn) = O(deg(f7z)1/2)-

We call a function symmetric if its value only depends on the Hamming
weight of the input.

This conjecture is true for symmetric functions [Lee et al., 2015].



Our Results

Theorem ([Li and Sun, 2017])

For any positive integer m with at least two different prime factors p, q
and any non-trivial symmetric function f : {0,1}" — {0,1}, we have

1
deg,(f) > —— - n.
()2

6
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Symmetric Function Embedding

Lemma

Let f:{0,1}™ — {0,1} be a non-degenerate Boolean function. Then
there exists a set of indices S C [n] with |S| = w(1), and a restriction
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Symmetric Function Embedding

Lemma

Let f:{0,1}™ — {0,1} be a non-degenerate Boolean function. Then
there exists a set of indices S C [n] with |S| = w(1), and a restriction
o [n]\S — {0, 1} such that f|, is a non-trivial symmetric Boolean
function.

f($1,$2,l’3,1’4,$5,$6,' : '7xn—17xn)

Symmetric: f(xy, 1,3, 0, 0, 1,--- 2,1, 1)

# Free variables = w(1).

Proved by hypergraph Ramsey theory.



Symmetric Function Embedding

Lemma

Let f:{0,1}" — {0,1} be a non-degenerate Boolean function. Then
there exists a set of indices S C [n] with |S| > r(n) = w(1), and a
restriction o : [n]\S — {0, 1} such that f|, is a non-trivial symmetric
Boolean function.

Suppose M (f) is a complexity measure. If M is non-increasing w.r.t.
restrictions (i.e., M(f) > M(f|s)), then

V symmetric f, M(f) > h(n)
= V non-degenerated f, M(f)> h(r(n)).
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Symmetric Function Embedding

Lemma

Let f:{0,1}" — {0,1} be a non-degenerate Boolean function. Then
there exists a set of indices S C [n] with |S| > r(n) = w(1), and a
restriction o : [n]\S — {0, 1} such that f|, is a non-trivial symmetric
Boolean function.

Suppose M (f) is a complexity measure. If M is non-increasing w.r.t.
restrictions (i.e., M(f) > M(f|s)), then

V symmetric f, M(f) > h(n)
= V non-degenerated f, M(f)> h(r(n)).

r(n) = y/log™(n) grows extremely slow, but suffices for our purpose.

9/22
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Mahler Expansion

For any symmetric f, let F' be its univariate version, i.e., F'(|z|) = f(x).

Several ways to represent F'(t):
» expanding by ¢/ (aka standard form);
> expanding by () (aka Mahler expansion);
> ...

Theorem (Mahler expansion)

Assume that f : {0,1}" — {0,1} is a symmetric Boolean function, and
F is the corresponding univariate version. Let d := max{n,m — 1}.

Then there exists a unique sequence g, a1, -+ ,0q € Ly, such that
d
Za' t\ [ F(t), 0<t<m;
'ojj o 0, m<m-—landn<t<m.
=

We call E?:o a; (%) the Mahler expansion of F' over Zp,, and a; the
j-th Mahler coefficient.
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Mahler Expansion

For any symmetric f, let F' be its univariate version, i.e., F'(|z|) = f(x).

Several ways to represent F'(t):
» expanding by t/ (aka standard form);
» expanding by (;) (aka Mahler expansion);
> ...

Let n =2 and f(x) = x¢ V 1. On Zs, its Mahler expansion is
(12l L (el (]
F(:z:)—<1 +4 5 +2 1)
But deg;(f) = 2.

Fact
deg,,(f) = max{l: a; Z0 (mod m),¢ < n}.

11/22
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MOD Function
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MOD Function

For any symmetric f, let F' be its univariate version, i.e., F'(|z]) = f(z).

Several ways to represent F'(t):
» expanding by t/ (aka standard form);
» expanding by (;) (aka Mahler expansion);
» expanding by MOD functions, provided F' is periodic.
» m-periodic: F(a) = F(a+m),Va € {0,1,--- ,n —m}

If n > m — 1, define

MOD;;" (z) = {07 [el # ¢ (mod m);

1, |z|=c (mod m).

m—1
a=0 -

Every m-periodic function can be spanned by {MOD;"™ (x)

13 /22
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NAE, (z1,...,2z,) :=1[34,j s.t. &; # x;]. Then w3 (NAE3) =3
while 73 (NAE4) = 9.

Theorem ([Wilson, 2006])

For prime p and positive integers t, k, denote d := (k —1) - p(pt) +p* — 1.
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MOD Function

If £ is m‘-periodic but not m'~!-periodic, then we call 7,,(f) := m' the
base-m period of f.

» Example: The not-all-equal NAE function is defined as

NAE, (z1,...,2z,) :=1[34,j s.t. &; # x;]. Then w3 (NAE3) =3
while 73 (NAE4) = 9.

Corollary

For prime p and positive integers t, k, denote d := ( —1)-o(pt) +pt —1.

Then for any n > d and a, we have deg,. (MOD”’p ) =d.
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Combination of Different Expansions

The MOD expansion of f:
p'—1

flz) = Z ijODZl’pt (z). Let w := (wo, - - ,wpt,l)T
§=0

The MOD expansion of MODf{pt_l:

p'—1

- ; " ) ; ; T
MOD;;? 1(:v) = Z vj(-z)MODﬁl’p (). Let v := (v((f),--~ ,v(z,,)fl) .

=0

f(x) is not p'~! periodic = w ¢ span {v(o), o ,U(ptfl—l)}_

16
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Combination of Different Expansions

f(z) is not p'~! periodic = w ¢ span {v(o), o ,'U(”t*l—l)}_

Apply Mahler expanS|on to MODs, where a(J is the ¢-th Mahler
coefficient of MODf;p :

p'—1 d p'—1
x) = Z w;MOD%? (z) = Z Z wjay’ () (|x> ,
i=0 =0 7=0

where d is the degree of MODZL’pt.
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Combination of Different Expansions

f(z) is not p'~! periodic = w ¢ span {v(o), o ,'U(Y’t*l—l)}_

Apply Mahler expanS|on to MODs, where a(J is the ¢-th Mahler
coefficient of MODf{p :

S o) (Il
ZwMOD“’ Z ijozg) (x) ,
j=0 £=0 j=0

where d is the degree of MODiL’p .

» Construct S € sz(pt)xpt sit. S; ;= (a(djzi/pk’Q) mod p.
> Verify that ker § = span {,0(0)7 . ,v(ptfl_l)}.
> So Sw # 0, implying a high-order Mahler coefficient of f.

17 /22



From Primes to Their Product

Theorem

For any prime p, positive integer k, and non-trivial symmetric function
f:{0,1}™ — {0, 1} with sufficiently large n,

degi(f) > (p—1) - k.
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From Primes to Their Product

Lemma
For any prime p and non-trivial symmetric function f : {0,1}"™ — {0,1},

dogy (9 2 win {3, (1- D) my(0)}.

Lemma (Periodicity Lemma)

Let g be an a-periodic and b-periodic function on domain {0,1,...,n}
with ged(a,b) =1 and n > a+b— 2. Then g is a constant function.

a=4,b=9andn=a+b—-2



From Primes to Their Product

Lemma

For any prime p and non-trivial symmetric function f : {0,1}"™ — {0,1},
. [n 1
dog (1) 2 win {3, (1- D) w0}

Goal:
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deg,,(f) > =————— -n.

1
2+ 9+ 1
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From Primes to Their Product

Lemma

For any prime p and non-trivial symmetric function f : {0,1}"™ — {0,1},
. [n 1
dog (1) 2 win {3, (1- D) w0}

Goal:
1

D

- n.

If max{deg,(f),deg,(f)} > %, the inequality follows naturally.

Otherwise,

ety () = max{de, (), degy (1) = max { (1= D)y, (1= D) i ).

By periodicity lemma, m,(f) + m,(f) > n + 2.



From Primes to Their Product

Lemma
For any prime p and non-trivial symmetric function f : {0,1}"™ — {0,1},

dog (1) 2 win {3, (1- D) w0}

Goal: )
deg, (f) > —— ..
2+ 4+ 2
If max{deg,(f),deg,(f)} > %, the inequality follows naturally.
Otherwise,
et () = max{deg, (1), degy (1) = max { (1= ) my(). (1= 2 ) malt) }.

wg(f) >n+2.

+
Combine both to get deg,,(f) > 5T ”+J2r > P +
1 1

By periodicity lemma, m,(f)




Instance with Factor 1/2

Lemma

If1,a1,--- ,a are linearly independent over Q, then for any € > 0, there
exist infinitely many ¢ € Ny such that fa; mod 1 € (1 —e,1) for all i.

19/22



Instance with Factor 1/2

Lemma
If1,a1,--- ,a are linearly independent over Q, then for any € > 0, there
exist infinitely many ¢ € Ny such that fa; mod 1 € (1 —e,1) for all i.

Suppose m = py - - - pg. Select another prime ¢q. Let a; := log g/ log p;.

19/22



Instance with Factor 1/2

Lemma

If1,a1,--- ,a are linearly independent over Q, then for any € > 0, there
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Then 1,aq,- - ,a are linearly independent over Q.
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Lemma

If1,a1,--- ,a are linearly independent over Q, then for any € > 0, there
exist infinitely many ¢ € Ny such that fa; mod 1 € (1 —e,1) for all i.

Suppose m = py - - - pg. Select another prime ¢q. Let a; := log g/ log p;.
Then 1,aq,- - ,a are linearly independent over Q.

Thus, we have infinitely many ¢ s.t. £-logq/logp; mod 1€ (1 —¢,1).
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Instance with Factor 1/2

Lemma

If1,a1,--- ,a are linearly independent over Q, then for any € > 0, there
exist infinitely many ¢ € Ny such that fa; mod 1 € (1 —e,1) for all i.

Suppose m = py - - - pg. Select another prime ¢q. Let a; := log g/ log p;.
Then 1,aq,- - ,a are linearly independent over Q.

Thus, we have infinitely many ¢ s.t. £-logq/logp; mod 1€ (1 —¢,1).
Therefore, p}i /q* € (1,p5) where 7; = [£-log q/logp;].

19/22
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Instance with Factor 1/2

For fixed ¢, take n = 2¢%, and consider the following symmetric function

o1 ... g0 phi Ll

o 6 6 6 6 6 6 06 © 6 6 06 06 6 0 O
0O 0000 O0OOO0OT1TO0OUO0OO0OUO0OTUO0OTQO0OO
[ is p;*-periodic, and hence deg,, (f) < p;* — 1 [Wilson, 2006].
Finally,

CRT Ti n
deg,,(f) = max{deg, (f)} < max{p;"} < §ma><{pf}-
Then let ¢ — 0.
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Concluding Remarks

» Ramsey-type argument requires super large n > tower(poly(p, k)).

Could it be improved to something like n > exp(poly(p, k))?

> Is it true that deg(f) = O (poly (deg,,(f))) for all non-trivial
Boolean functions?

» Conjecture: deg,,(f) > n/2 — o(n) for all non-trivial symmetric
Boolean functions when m contains two different prime factors.
> A related conjecture: deg(f) > n — O(1) for all non-trivial
symmetric Boolean functions. [Gathen and Roche, 1997]
> Best lower bound: deg(f) > n — O(n%??%).
> Best instance: deg(f) =n — 3.



Thank you!




