On the Degree of Boolean Functions as Polynomials over \mathbb{Z}_m

Xiaoming Sun 1 Yuan Sun 1 Jiaheng Wang 2 Kewen Wu 2 Zhiyu Xia 1 Yufan Zheng 1

 1 Institute of Computing Technology, Chinese Academy of Sciences 2 Peking University

ICALP 2020

 $\mathbf{AC}^0\colon$ Unbounded fan-in constant-depth circuits with AND, OR and NOT gates.

 $\mathbf{AC}^0[m]$: Unbounded fan-in constant-depth circuits with AND, OR, NOT and \mathbf{MOD}^m gates.

 $\mathbf{AC}^0[m]$: Unbounded fan-in constant-depth circuits with AND, OR, NOT and $\overline{\mathsf{MOD}^m}$ gates.

Razborov-Smolensky: $MOD_n^3 \notin \mathbf{AC}^0[2]$.

 $\mathbf{AC}^0[m]$: Unbounded fan-in constant-depth circuits with AND, OR, NOT and \mathbf{MOD}^m gates.

Razborov-Smolensky: $\mathsf{MOD}_n^3 \notin \mathbf{AC}^0[2]$.

What about $AC^0[6]$?

 $\mathbf{AC}^0[m]$: Unbounded fan-in constant-depth circuits with AND, OR, NOT and \mathbf{MOD}^m gates.

Razborov-Smolensky: $MOD_n^3 \notin \mathbf{AC}^0[2]$.

What about $\mathbf{AC}^0[6]$? We do not know whether $\mathbf{AC}^0[6] \supseteq \mathbf{NP}$ or not!

 $\mathbf{AC}^0[m]$: Unbounded fan-in constant-depth circuits with AND, OR, NOT and \mathbf{MOD}^m gates.

Razborov-Smolensky: $MOD_n^3 \notin \mathbf{AC}^0[2]$.

What about $\mathbf{AC}^0[6]$? We do not know whether $\mathbf{AC}^0[6] \supseteq \mathbf{NP}$ or not!

Currently best upper bound of modular counting circuits:

 $ACC^0 \not\supseteq NEXP$, which builds on Williams' breakthrough algorithmic method for circuit lower bounds [Williams, 2011].

Represent every Boolean function $f:\{0,1\}^n \to \{0,1\}$ by polynomial:

$$\sum_{a \in \{0,1\}^n} f(a) \left(\prod_{i: a_i = 1} x_i \right) \left(\prod_{i: a_i = 0} (1 - x_i) \right) =: \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i.$$

Represent every Boolean function $f:\{0,1\}^n \to \{0,1\}$ by polynomial:

$$\sum_{a \in \{0,1\}^n} f(a) \left(\prod_{i: a_i = 1} x_i \right) \left(\prod_{i: a_i = 0} (1 - x_i) \right) =: \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i.$$

Over \mathbb{Z}_m :

$$\sum_{S\subseteq[n]}(c_S \bmod m)\prod_{i\in S}x_i.$$

Represent every Boolean function $f:\{0,1\}^n \to \{0,1\}$ by polynomial:

$$\sum_{a \in \{0,1\}^n} f(a) \left(\prod_{i: a_i = 1} x_i \right) \left(\prod_{i: a_i = 0} (1 - x_i) \right) =: \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i.$$

Over \mathbb{Z}_m :

$$\sum_{S\subseteq[n]} (c_S \bmod m) \prod_{i\in S} x_i.$$

Definition (Degree)

The degree (resp. modulo-m degree) of a Boolean function f, denoted by $\deg(f)$ (resp. $\deg_m(f)$), is the degree of the polynomial that represents f over \mathbb{Z} (resp. \mathbb{Z}_m).

Represent every Boolean function $f:\{0,1\}^n \to \{0,1\}$ by polynomial:

$$\sum_{a \in \{0,1\}^n} f(a) \left(\prod_{i: a_i = 1} x_i \right) \left(\prod_{i: a_i = 0} (1 - x_i) \right) =: \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i.$$

Over \mathbb{Z}_m :

$$\sum_{S\subseteq[n]} (c_S \bmod m) \prod_{i\in S} x_i.$$

Definition (Degree)

The degree (resp. modulo-m degree) of a Boolean function f, denoted by $\deg(f)$ (resp. $\deg_m(f)$), is the degree of the polynomial that represents f over \mathbb{Z} (resp. \mathbb{Z}_m).

 $\deg(f)$ is polynomially related to many other complexity measures, e.g., block sensitivity, decision tree depth, and sensitivity [Huang, 2019].

Represent every Boolean function $f:\{0,1\}^n \to \{0,1\}$ by polynomial:

$$\sum_{a \in \{0,1\}^n} f(a) \left(\prod_{i: a_i = 1} x_i \right) \left(\prod_{i: a_i = 0} (1 - x_i) \right) =: \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i.$$

Over \mathbb{Z}_m :

$$\sum_{S\subseteq[n]}(c_S \bmod m)\prod_{i\in S}x_i.$$

Definition (Degree)

The degree (resp. modulo-m degree) of a Boolean function f, denoted by $\deg(f)$ (resp. $\deg_m(f)$), is the degree of the polynomial that represents f over \mathbb{Z} (resp. \mathbb{Z}_m).

 $\deg(f)$ is polynomially related to many other complexity measures, e.g., block sensitivity, decision tree depth, and sensitivity [Huang, 2019].

What about $\deg_m(f)$?

Consider $f = \mathsf{PARITY}_n$.

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have $\deg(f) = n$

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have deg(f) = n but $deg_2(f) = 1$. Unbounded!

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have $\deg(f) = n$ but $\deg_2(f) = 1$. Unbounded!

Also $\deg_3(f) = n$.

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have deg(f) = n but $deg_2(f) = 1$. Unbounded!

Also $\deg_3(f) = n$.

A function is non-degenerated, if it depends on all n input bits.

Theorem ([Gopalan, Lovett and Shpilka, 2009])

For all non-degenerated $f: \{0,1\}^n \to \{0,1\}$ and different primes p,q, $\deg(f) > \frac{n}{n}$.

$$\deg_q(f) \ge \frac{n}{\lceil \log_2 p \rceil \deg_p(f) p^{2 \deg_p(f)}}.$$

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have deg(f) = n but $deg_2(f) = 1$. Unbounded!

Also $\deg_3(f) = n$.

A function is *non-degenerated*, if it depends on all n input bits.

Theorem ([Gopalan, Lovett and Shpilka, 2009])

For all non-degenerated $f:\{0,1\}^n \to \{0,1\}$ and different primes p,q, $\deg_q(f) \geq \frac{n}{\lceil \log_2 p \rceil \deg_p(f) p^{2 \deg_p(f)}}.$

i.e., Low $\deg_p(f)$ implies high $\deg_q(f)$.

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have deg(f) = n but $deg_2(f) = 1$. Unbounded!

Also $\deg_3(f) = n$.

A function is *non-degenerated*, if it depends on all n input bits.

Theorem ([Gopalan, Lovett and Shpilka, 2009])

For all non-degenerated $f:\{0,1\}^n \to \{0,1\}$ and different primes p,q, $\deg_q(f) \geq \frac{n}{\lceil \log_2 p \rceil \deg_p(f) p^{2\deg_p(f)}}.$

i.e., Low $\deg_p(f) = o(\log n)$ implies high $\deg_q(f) = \Omega(n^{1-o(1)})$.

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have deg(f) = n but $deg_2(f) = 1$. Unbounded!

Also $\deg_3(f) = n$.

A function is *non-degenerated*, if it depends on all n input bits.

Theorem ([Gopalan, Lovett and Shpilka, 2009])

For all non-degenerated $f:\{0,1\}^n \to \{0,1\}$ and different primes p,q, $\deg_q(f) \geq \frac{n}{\lceil \log_2 p \rceil \deg_p(f) p^{2\deg_p(f)}}.$

i.e., Low $\deg_p(f)=o(\log n)$ implies high $\deg_q(f)=\Omega(n^{1-o(1)}).$ By Chinese Remainder Theorem,

$$\deg_{pq}(f) = \max\{\deg_p(f), \deg_q(f)\}\$$

Consider $f = \mathsf{PARITY}_n$. The polynomial representing it is

$$\mathsf{PARITY}_n(x) = \frac{1}{2} - \frac{1}{2} \prod_{i=1}^n (1 - 2x_i).$$

We have deg(f) = n but $deg_2(f) = 1$. Unbounded!

Also $\deg_3(f) = n$.

A function is *non-degenerated*, if it depends on all n input bits.

Theorem ([Gopalan, Lovett and Shpilka, 2009])

For all non-degenerated $f:\{0,1\}^n \to \{0,1\}$ and different primes p,q, $\deg_q(f) \geq \frac{n}{\lceil \log_2 p \rceil \deg_p(f) p^{2\deg_p(f)}}.$

i.e., Low $\deg_p(f)=o(\log n)$ implies high $\deg_q(f)=\Omega(n^{1-o(1)}).$ By Chinese Remainder Theorem,

$$\deg_{pq}(f) = \max\{\deg_p(f), \deg_q(f)\} = \Omega(\log n).$$

$\deg_{pq}(f)$ vs $\deg(f)$

Conjecture

For any Boolean function f , $\deg(f) = O\left(\operatorname{poly}\left(\deg_{pq}(f)\right)\right).$

$\deg_{pq}(f)$ vs $\deg(f)$

Conjecture

For any Boolean function f,

$$deg(f) = O(poly(deg_{pq}(f))).$$

Best separation so far is quadratic [Li and Sun, 2017].

▶ There exists a sequence of Boolean functions $\{f_n\}$ with $\deg_{pq}(f_n) = O(\deg(f_n)^{1/2}).$

 $\deg_{pq}(f)$ vs $\deg(f)$

Conjecture

For any Boolean function f,

$$deg(f) = O(poly(deg_{pq}(f))).$$

Best separation so far is quadratic [Li and Sun, 2017].

▶ There exists a sequence of Boolean functions $\{f_n\}$ with $\deg_{pq}(f_n) = O(\deg(f_n)^{1/2}).$

We call a function *symmetric* if its value only depends on the Hamming weight of the input.

$$\deg_{pq}(f)$$
 vs $\deg(f)$

Conjecture

For any Boolean function f,

$$deg(f) = O(poly(deg_{pq}(f))).$$

Best separation so far is quadratic [Li and Sun, 2017].

▶ There exists a sequence of Boolean functions $\{f_n\}$ with $\deg_{nq}(f_n) = O(\deg(f_n)^{1/2}).$

We call a function *symmetric* if its value only depends on the Hamming weight of the input.

This conjecture is true for symmetric functions [Lee et al., 2015].

Theorem ([Li and Sun, 2017])

For any positive integer m with at least two different prime factors p,q and any non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$, we have

$$\deg_m(f) \ge \frac{1}{p+q} \cdot n.$$

Theorem

For any positive integer m with at least two different prime factors p,q and any non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$, we have

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

The factor cannot be improved to any constant larger than 1/2.

Theorem

For any positive integer m with at least two different prime factors p,q and any non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$, we have

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

The factor cannot be improved to any constant larger than 1/2.

Theorem

For any prime p, positive integer k, and non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$ with sufficiently large n, we have

$$\deg_{p^k}(f) \ge (p-1) \cdot k.$$

The bound $(p-1) \cdot k$ is tight.

Theorem

For any positive integer m with at least two different prime factors p,q and any non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$, we have

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

The factor cannot be improved to any constant larger than 1/2.

Theorem

For any prime p, positive integer k, and non-degenerated function $f:\{0,1\}^n \to \{0,1\}$ with sufficiently large n, we have

$$\deg_{p^k}(f) \ge (p-1) \cdot k.$$

The bound $(p-1) \cdot k$ is tight.

Lemma

Let $f:\{0,1\}^n \to \{0,1\}$ be a non-degenerate Boolean function. Then there exists a set of indices $S\subseteq [n]$ with $|S|=\omega(1)$, and a restriction $\sigma:[n]\backslash S\to \{0,1\}$ such that $f|_\sigma$ is a non-trivial symmetric Boolean function.

$$f(x_1,x_2,x_3,x_4,x_5,x_6,\cdot\cdot\cdot,x_{n-1},x_n)$$
 Symmetric:
$$f(x_1,\ \ 1,x_3,\ \ 0,\ \ 0,\ \ 1,\cdot\cdot\cdot,x_{n-1},\ \ 1)$$
 # Free variables = $\omega(1)$.

Lemma

Let $f:\{0,1\}^n \to \{0,1\}$ be a non-degenerate Boolean function. Then there exists a set of indices $S\subseteq [n]$ with $|S|=\omega(1)$, and a restriction $\sigma:[n]\backslash S\to \{0,1\}$ such that $f|_\sigma$ is a non-trivial symmetric Boolean function.

$$f(x_1,x_2,x_3,x_4,x_5,x_6,\cdot\cdot\cdot,x_{n-1},x_n)$$
 Symmetric:
$$f(x_1,\ \ 1,x_3,\ \ 0,\ \ 0,\ \ 1,\cdot\cdot\cdot,x_{n-1},\ \ 1)$$

$$\# \ \text{Free variables} = \omega(1).$$

Proved by hypergraph Ramsey theory.

Lemma

Let $f:\{0,1\}^n \to \{0,1\}$ be a non-degenerate Boolean function. Then there exists a set of indices $S \subseteq [n]$ with $|S| \ge r(n) = \omega(1)$, and a restriction $\sigma:[n] \setminus S \to \{0,1\}$ such that $f|_{\sigma}$ is a non-trivial symmetric Boolean function.

Suppose M(f) is a complexity measure. If M is non-increasing w.r.t. restrictions (i.e., $M(f) \geq M(f|_{\sigma})$), then \forall symmetric $f,\ M(f) \geq h(n)$

 $\implies \forall \text{ non-degenerated } f, \ M(f) \geq h(r(n)).$

Lemma

Let $f:\{0,1\}^n \to \{0,1\}$ be a non-degenerate Boolean function. Then there exists a set of indices $S\subseteq [n]$ with $|S|\geq r(n)=\omega(1)$, and a restriction $\sigma:[n]\backslash S\to \{0,1\}$ such that $f|_\sigma$ is a non-trivial symmetric Boolean function.

Suppose M(f) is a complexity measure. If M is non-increasing w.r.t. restrictions (i.e., $M(f) \ge M(f|_{\sigma})$), then

$$\forall$$
 symmetric $f,\ M(f) \geq h(n)$

$$\implies \forall \text{ non-degenerated } f, \ M(f) \geq h(r(n)).$$

 $r(n) \approx \sqrt{\log^*(n)}$ grows extremely slow, but suffices for our purpose.

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

For any symmetric f, let F be its univariate version, i.e., F(|x|)=f(x). Several ways to represent F(t):

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

• expanding by t^j (aka standard form);

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{i}$ (aka Mahler expansion);

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{j}$ (aka Mahler expansion);
- ▶ ..

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{i}$ (aka Mahler expansion);
- **.**..

Theorem (Mahler expansion)

Assume that $f:\{0,1\}^n \to \{0,1\}$ is a symmetric Boolean function, and F is the corresponding univariate version. Let $d:=\max\{n,m-1\}$. Then there exists a unique sequence $\alpha_0,\alpha_1,\cdots,\alpha_d\in\mathbb{Z}_m$ such that

$$\sum_{j=0}^{d} \alpha_j {t \choose j} = \left\{ \begin{array}{ll} F(t), & 0 \le t \le n; \\ 0, & n < m - 1 \text{ and } n < t < m. \end{array} \right.$$

We call $\sum_{j=0}^d \alpha_j {t \choose j}$ the Mahler expansion of F over \mathbb{Z}_m , and α_j the j-th Mahler coefficient.

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{i}$ (aka Mahler expansion);

Let n=2 and $f(x)=x_0\vee x_1$. On \mathbb{Z}_5 , its Mahler expansion is

$$F(x) = {\begin{vmatrix} |x| \\ 1 \end{vmatrix}} + 4{\begin{vmatrix} |x| \\ 2 \end{vmatrix}} + 2{\begin{vmatrix} |x| \\ 4 \end{vmatrix}}.$$

But $\deg_5(f) = 2$.

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{i}$ (aka Mahler expansion);

Let n=2 and $f(x)=x_0\vee x_1$. On \mathbb{Z}_5 , its Mahler expansion is

$$F(x) = {|x| \choose 1} + 4{|x| \choose 2} + 2{|x| \choose 4}.$$

But $\deg_5(f) = 2$.

Fact

$$\deg_m(f) = \max\{\ell : \alpha_\ell \not\equiv 0 \pmod m, \ell \le n\}.$$

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{i}$ (aka Mahler expansion);
- expanding by MOD functions, provided F is periodic.
 - ▶ m-periodic: $F(a) = F(a+m), \forall a \in \{0, 1, \dots, n-m\}$

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{i}$ (aka Mahler expansion);
- ightharpoonup expanding by MOD functions, provided F is *periodic*.

▶
$$m$$
-periodic: $F(a) = F(a+m), \forall a \in \{0, 1, \dots, n-m\}$

If $n \ge m - 1$, define

$$\mathsf{MOD}^{c,m}_n(x) := \begin{cases} 0, & |x| \not\equiv c \pmod{m}; \\ 1, & |x| \equiv c \pmod{m}. \end{cases}$$

For any symmetric f, let F be its univariate version, i.e., F(|x|) = f(x).

Several ways to represent F(t):

- expanding by t^j (aka standard form);
- expanding by $\binom{t}{j}$ (aka Mahler expansion);
- ightharpoonup expanding by MOD functions, provided F is *periodic*.

▶
$$m$$
-periodic: $F(a) = F(a+m), \forall a \in \{0, 1, \dots, n-m\}$

If $n \ge m - 1$, define

$$\mathsf{MOD}_n^{c,m}(x) := \begin{cases} 0, & |x| \not\equiv c \pmod{m}; \\ 1, & |x| \equiv c \pmod{m}. \end{cases}$$

Every m-periodic function can be spanned by $\{\mathsf{MOD}_n^{a,m}(x)\}_{a=0}^{m-1}$.

If f is m^t -periodic but not m^{t-1} -periodic, then we call $\pi_m(f) := m^t$ the base-m period of f.

If f is m^t -periodic but not m^{t-1} -periodic, then we call $\pi_m(f):=m^t$ the base-m period of f.

▶ Example: The not-all-equal NAE function is defined as $\mathsf{NAE}_n(x_1,\ldots,x_n) := \mathbb{I}[\exists i,j \text{ s.t. } x_i \neq x_j].$ Then $\pi_3(\mathsf{NAE}_3) = 3$ while $\pi_3(\mathsf{NAE}_4) = 9$.

If f is m^t -periodic but not m^{t-1} -periodic, then we call $\pi_m(f):=m^t$ the base-m period of f.

▶ Example: The not-all-equal NAE function is defined as $NAE_n(x_1,\ldots,x_n):=\mathbb{I}[\exists i,j \text{ s.t. } x_i\neq x_j].$ Then π_3 (NAE₃) = 3 while π_3 (NAE₄) = 9.

Theorem ([Wilson, 2006])

For prime p and positive integers t,k, denote $d:=(k-1)\cdot \varphi(p^t)+p^t-1$. Then for any $n\geq d$, we have $\deg_{p^k}(\mathsf{MOD}^{0,p^t}_n)=d$.

If f is m^t -periodic but not m^{t-1} -periodic, then we call $\pi_m(f):=m^t$ the base-m period of f.

▶ Example: The not-all-equal NAE function is defined as $NAE_n(x_1,\ldots,x_n):=\mathbb{I}[\exists i,j \text{ s.t. } x_i\neq x_j].$ Then π_3 (NAE₃) = 3 while π_3 (NAE₄) = 9.

Corollary

For prime p and positive integers t,k, denote $d:=(k-1)\cdot \varphi(p^t)+p^t-1$. Then for any $n\geq d$ and a, we have $\deg_{p^k}(\mathsf{MOD}_n^{a,p^t})=d$.

The MOD expansion of f:

$$f(x) = \sum_{j=0}^{p^t-1} w_j \mathsf{MOD}_n^{j,p^t}(x). \qquad \qquad \mathsf{Let} \ \boldsymbol{w} := \left(w_0, \cdots, w_{p^t-1}\right)^\top.$$

The MOD expansion of f:

$$f(x) = \sum_{j=0}^{p^t-1} w_j \mathsf{MOD}_n^{j,p^t}(x). \qquad \qquad \mathsf{Let} \ \boldsymbol{w} := \left(w_0, \cdots, w_{p^t-1}\right)^\top.$$

The MOD expansion of $MOD_n^{i,p^{t-1}}$:

$$\mathsf{MOD}_n^{i,p^{t-1}}(x) = \sum_{i=0}^{p^t-1} v_j^{(i)} \mathsf{MOD}_n^{j,p^t}(x). \quad \mathsf{Let} \ \boldsymbol{v}^{(i)} := \left(v_0^{(i)}, \cdots, v_{p^t-1}^{(i)}\right)^\top.$$

The MOD expansion of f:

$$f(x) = \sum_{j=0}^{p^t-1} w_j \mathsf{MOD}_n^{j,p^t}(x). \qquad \qquad \mathsf{Let} \ \boldsymbol{w} := \left(w_0, \cdots, w_{p^t-1}\right)^\top.$$

The MOD expansion of $MOD_n^{i,p^{t-1}}$:

$$\mathsf{MOD}_n^{i,p^{t-1}}(x) = \sum_{j=0}^{p^t-1} v_j^{(i)} \mathsf{MOD}_n^{j,p^t}(x). \quad \mathsf{Let} \ \boldsymbol{v}^{(i)} := \left(v_0^{(i)}, \cdots, v_{p^t-1}^{(i)}\right)^\top.$$

$$f(x)$$
 is not p^{t-1} periodic $\implies \boldsymbol{w} \notin \operatorname{span} \left\{ \boldsymbol{v}^{(0)}, \cdots, \boldsymbol{v}^{(p^{t-1}-1)}
ight\}$.

$$f(x) \text{ is not } p^{t-1} \text{ periodic } \implies \textbf{\textit{w}} \notin \operatorname{span} \Big\{ \textbf{\textit{v}}^{(0)}, \cdots, \textbf{\textit{v}}^{(p^{t-1}-1)} \Big\}.$$

Apply Mahler expansion to MODs, where $\alpha_{\ell}^{(j)}$ is the ℓ -th Mahler coefficient of MOD_n^{j,p^t} :

$$f(x) = \sum_{j=0}^{p^t-1} w_j \mathsf{MOD}_n^{j,p^t}(x) = \sum_{\ell=0}^d \left(\left(\sum_{j=0}^{p^t-1} w_j \alpha_\ell^{(j)} \right) \binom{|x|}{\ell} \right),$$

where d is the degree of MOD_n^{j,p^t} .

$$f(x) \text{ is not } p^{t-1} \text{ periodic } \implies \textbf{\textit{w}} \notin \operatorname{span} \Big\{ \textbf{\textit{v}}^{(0)}, \cdots, \textbf{\textit{v}}^{(p^{t-1}-1)} \Big\}.$$

Apply Mahler expansion to MODs, where $\alpha_{\ell}^{(j)}$ is the ℓ -th Mahler coefficient of MOD_n^{j,p^t} :

$$f(x) = \sum_{j=0}^{p^t-1} w_j \mathsf{MOD}_n^{j,p^t}(x) = \sum_{\ell=0}^d \left(\left(\sum_{j=0}^{p^t-1} w_j \alpha_\ell^{(j)} \right) \binom{|x|}{\ell} \right),$$

where d is the degree of MOD_n^{j,p^t} .

► Construct $S \in \mathbb{F}_p^{\varphi(p^t) \times p^t}$ s.t. $S_{i,j} = (\alpha_{d-i}^{(j)}/p^{k-2}) \bmod p$.

$$f(x) \text{ is not } p^{t-1} \text{ periodic } \implies \textbf{\textit{w}} \notin \operatorname{span} \Big\{ \textbf{\textit{v}}^{(0)}, \cdots, \textbf{\textit{v}}^{(p^{t-1}-1)} \Big\}.$$

Apply Mahler expansion to MODs, where $\alpha_{\ell}^{(j)}$ is the ℓ -th Mahler coefficient of MOD_n^{j,p^t} :

$$f(x) = \sum_{j=0}^{p^t-1} w_j \mathsf{MOD}_n^{j,p^t}(x) = \sum_{\ell=0}^d \left(\left(\sum_{j=0}^{p^t-1} w_j \alpha_\ell^{(j)} \right) \binom{|x|}{\ell} \right),$$

where d is the degree of MOD_n^{j,p^t} .

- ▶ Construct $S \in \mathbb{F}_p^{\varphi(p^t) \times p^t}$ s.t. $S_{i,j} = (\alpha_{d-i}^{(j)}/p^{k-2}) \bmod p$.
- $lackbox{ Verify that } \ker oldsymbol{S} = \mathrm{span}\,\Big\{oldsymbol{v}^{(0)},\cdots,oldsymbol{v}^{(p^{t-1}-1)}\Big\}.$

$$f(x) \text{ is not } p^{t-1} \text{ periodic } \implies \textbf{\textit{w}} \notin \operatorname{span} \Big\{ \textbf{\textit{v}}^{(0)}, \cdots, \textbf{\textit{v}}^{(p^{t-1}-1)} \Big\}.$$

Apply Mahler expansion to MODs, where $\alpha_{\ell}^{(j)}$ is the ℓ -th Mahler coefficient of MOD_n^{j,p^t} :

$$f(x) = \sum_{j=0}^{p^t-1} w_j \mathsf{MOD}_n^{j,p^t}(x) = \sum_{\ell=0}^d \left(\left(\sum_{j=0}^{p^t-1} w_j \alpha_\ell^{(j)} \right) \binom{|x|}{\ell} \right),$$

where d is the degree of MOD_n^{j,p^t} .

- $\qquad \qquad \textbf{Construct } \boldsymbol{S} \in \mathbb{F}_p^{\varphi(p^t) \times p^t} \text{ s.t. } \boldsymbol{S}_{i,j} = (\alpha_{d-i}^{(j)}/p^{k-2}) \bmod p.$
- lacktriangle Verify that $\ker oldsymbol{S} = \mathrm{span}\,\Big\{oldsymbol{v}^{(0)},\cdots,oldsymbol{v}^{(p^{t-1}-1)}\Big\}.$
- ▶ So $Sw \neq 0$, implying a high-order Mahler coefficient of f.

Theorem

For any prime p, positive integer k, and non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$ with sufficiently large n,

$$\deg_{p^k}(f) \ge (p-1) \cdot k.$$

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \rightarrow \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Lemma (Periodicity Lemma)

Let g be an a-periodic and b-periodic function on domain $\{0,1,\ldots,n\}$ with gcd(a,b)=1 and $n\geq a+b-2$. Then g is a constant function.

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \rightarrow \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Lemma (Periodicity Lemma)

Let g be an a-periodic and b-periodic function on domain $\{0,1,\ldots,n\}$ with gcd(a,b)=1 and $n\geq a+b-2$. Then g is a constant function.

$$a = 4$$
, $b = 9$ and $n = a + b - 2$

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Goal:

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Goal:

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

If $\max\{\deg_p(f),\deg_q(f)\}\geq \frac{n}{2}$, the inequality follows naturally.

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \rightarrow \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Goal:

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

If $\max\{\deg_p(f),\deg_q(f)\}\geq \frac{n}{2}$, the inequality follows naturally.

Otherwise,

$$\deg_{pq}(f) = \max\{\deg_p(f), \deg_q(f)\} \geq \max\left\{\left(1 - \frac{1}{p}\right)\pi_p(f), \left(1 - \frac{1}{q}\right)\pi_q(f)\right\}.$$

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \rightarrow \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Goal:

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

If $\max\{\deg_p(f),\deg_q(f)\}\geq \frac{n}{2}$, the inequality follows naturally.

Otherwise,

$$\deg_{pq}(f) = \max\{\deg_p(f), \deg_q(f)\} \ge \max\left\{\left(1 - \frac{1}{p}\right)\pi_p(f), \left(1 - \frac{1}{q}\right)\pi_q(f)\right\}.$$

By periodicity lemma, $\pi_p(f) + \pi_q(f) > n+2$.

Lemma

For any prime p and non-trivial symmetric function $f:\{0,1\}^n \to \{0,1\}$,

$$\deg_p(f) \ge \min\left\{\frac{n}{2}, \left(1 - \frac{1}{p}\right)\pi_p(f)\right\}.$$

Goal:

$$\deg_m(f) \ge \frac{1}{2 + \frac{1}{p-1} + \frac{1}{q-1}} \cdot n.$$

If $\max\{\deg_p(f),\deg_q(f)\}\geq \frac{n}{2}$, the inequality follows naturally.

Otherwise,

$$\deg_{pq}(f) = \max\{\deg_p(f), \deg_q(f)\} \geq \max\left\{\left(1 - \frac{1}{p}\right)\pi_p(f), \left(1 - \frac{1}{q}\right)\pi_q(f)\right\}.$$

By periodicity lemma, $\pi_p(f) + \pi_q(f) > n+2$.

Combine both to get
$$\deg_{pq}(f) > \frac{n+2}{2+\frac{1}{p-1}+\frac{1}{q-1}} > \frac{n}{2+\frac{1}{p-1}+\frac{1}{q-1}}.$$

Lemma

If $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} , then for any $\varepsilon > 0$, there exist infinitely many $\ell \in \mathbb{N}_+$ such that $\ell a_i \mod 1 \in (1 - \varepsilon, 1)$ for all i.

Lemma

If $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} , then for any $\varepsilon > 0$, there exist infinitely many $\ell \in \mathbb{N}_+$ such that $\ell a_i \mod 1 \in (1 - \varepsilon, 1)$ for all i.

Suppose $m = p_1 \cdots p_k$. Select another prime q. Let $a_i := \log q / \log p_i$.

Lemma

If $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} , then for any $\varepsilon > 0$, there exist infinitely many $\ell \in \mathbb{N}_+$ such that $\ell a_i \mod 1 \in (1 - \varepsilon, 1)$ for all i.

Suppose $m = p_1 \cdots p_k$. Select another prime q. Let $a_i := \log q / \log p_i$.

Then $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} .

Lemma

If $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} , then for any $\varepsilon > 0$, there exist infinitely many $\ell \in \mathbb{N}_+$ such that $\ell a_i \mod 1 \in (1 - \varepsilon, 1)$ for all i.

Suppose $m = p_1 \cdots p_k$. Select another prime q. Let $a_i := \log q / \log p_i$.

Then $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} .

Thus, we have infinitely many ℓ s.t. $\ell \cdot \log q / \log p_i \mod 1 \in (1 - \varepsilon, 1)$.

Lemma

If $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} , then for any $\varepsilon > 0$, there exist infinitely many $\ell \in \mathbb{N}_+$ such that $\ell a_i \mod 1 \in (1 - \varepsilon, 1)$ for all i.

Suppose $m = p_1 \cdots p_k$. Select another prime q. Let $a_i := \log q / \log p_i$.

Then $1, a_1, \dots, a_k$ are linearly independent over \mathbb{Q} .

Thus, we have infinitely many ℓ s.t. $\ell \cdot \log q / \log p_i \mod 1 \in (1 - \varepsilon, 1)$.

Therefore, $p_i^{r_i}/q^{\ell} \in (1, p_i^{\varepsilon})$ where $r_i = \lceil \ell \cdot \log q / \log p_i \rceil$.

For fixed ℓ , take $n=2q^\ell$, and consider the following symmetric function f:

For fixed ℓ , take $n=2q^\ell$, and consider the following symmetric function f:

f is $p_i^{r_i}$ -periodic, and hence $\deg_{p_i}(f) \leq p_i^{r_i} - 1$ [Wilson, 2006].

For fixed ℓ , take $n=2q^\ell$, and consider the following symmetric function f:

f is $p_i^{r_i}$ -periodic, and hence $\deg_{p_i}(f) \leq p_i^{r_i} - 1$ [Wilson, 2006].

Finally,

$$\deg_m(f) \stackrel{\mathsf{CRT}}{=} \max\{\deg_{p_i}(f)\} \leq \max\{p_i^{r_i}\} \leq \frac{n}{2} \max\{p_i^{\varepsilon}\}.$$

Then let $\varepsilon \to 0$.

▶ Ramsey-type argument requires super large $n \ge \text{tower}(\text{poly}(p, k))$. Could it be improved to something like $n \ge \exp(\text{poly}(p, k))$?

- ▶ Ramsey-type argument requires super large $n \ge \text{tower}(\text{poly}(p, k))$. Could it be improved to something like $n \ge \exp(\text{poly}(p, k))$?
- ▶ Is it true that $deg(f) = O\left(poly\left(deg_{pq}(f)\right)\right)$ for all non-trivial Boolean functions?

- ▶ Ramsey-type argument requires super large $n \ge \text{tower}(\text{poly}(p, k))$. Could it be improved to something like $n \ge \exp(\text{poly}(p, k))$?
- ▶ Is it true that $deg(f) = O\left(poly\left(deg_{pq}(f)\right)\right)$ for all non-trivial Boolean functions?
- ▶ Conjecture: $\deg_m(f) \ge n/2 o(n)$ for all non-trivial symmetric Boolean functions when m contains two different prime factors.

- ▶ Ramsey-type argument requires super large $n \ge \operatorname{tower}(\operatorname{poly}(p, k))$. Could it be improved to something like $n \ge \exp(\operatorname{poly}(p, k))$?
- ▶ Is it true that $deg(f) = O\left(poly\left(deg_{pq}(f)\right)\right)$ for all non-trivial Boolean functions?
- ▶ Conjecture: $\deg_m(f) \ge n/2 o(n)$ for all non-trivial symmetric Boolean functions when m contains two different prime factors.
- ▶ A related conjecture: $deg(f) \ge n O(1)$ for all non-trivial symmetric Boolean functions. [Gathen and Roche, 1997]
 - ▶ Best lower bound: $deg(f) \ge n O(n^{0.525})$.
 - ▶ Best instance: deg(f) = n 3.

Thank you!