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Power of Modular Counting

AC0: Unbounded fan-in constant-depth circuits with AND, OR and
NOT gates.

Razborov-Smolensky: MOD3
n /∈ AC0[2].

What about AC0[6]? We do not know whether AC0[6] ⊇ NP or not!

Currently best upper bound of modular counting circuits:
ACC0 6⊇ NEXP, which builds on Williams’ breakthrough algorithmic
method for circuit lower bounds [Williams, 2011].
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Polynomial Representation and Degree

Represent every Boolean function f : {0, 1}n → {0, 1} by polynomial:∑
a∈{0,1}n

f(a)

( ∏
i:ai=1

xi

)( ∏
i:ai=0

(1− xi)

)
=:

∑
S⊆[n]

cS
∏
i∈S

xi.

Over Zm: ∑
S⊆[n]

(cS mod m)
∏
i∈S

xi.

Definition (Degree)

The degree (resp. modulo-m degree) of a Boolean function f , denoted
by deg(f) (resp. degm(f)), is the degree of the polynomial that
represents f over Z (resp. Zm).

deg(f) is polynomially related to many other complexity measures, e.g.,
block sensitivity, decision tree depth, and sensitivity [Huang, 2019].

What about degm(f)?
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Polynomial Representation and Degree

Consider f = PARITYn.

The polynomial representing it is

PARITYn(x) =
1

2
− 1

2

n∏
i=1

(1− 2xi).

We have deg(f) = n but deg2(f) = 1. Unbounded!

Also deg3(f) = n.

A function is non-degenerated, if it depends on all n input bits.

Theorem ([Gopalan, Lovett and Shpilka, 2009])

For all non-degenerated f : {0, 1}n → {0, 1} and different primes p, q,

degq(f) ≥ n

dlog2 pedegp(f)p2 degp(f)
.

By Chinese Remainder Theorem,

degpq(f) = max{degp(f),degq(f)} = Ω(log n).
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degpq(f) vs deg(f)

Conjecture

For any Boolean function f ,

deg(f) = O
(
poly

(
degpq(f)

))
.

Best separation so far is quadratic [Li and Sun, 2017].

I There exists a sequence of Boolean functions {fn} with
degpq(fn) = O(deg(fn)1/2).

We call a function symmetric if its value only depends on the Hamming
weight of the input.

This conjecture is true for symmetric functions [Lee et al., 2015].
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Our Results

Theorem ([Li and Sun, 2017])

For any positive integer m with at least two different prime factors p, q
and any non-trivial symmetric function f : {0, 1}n → {0, 1}, we have

degm(f) ≥ 1

p+ q
· n.
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The factor cannot be improved to any constant larger than 1/2.
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Symmetric f(x)
with base-p period pt

f(x)

pt−1∑
j=0

wjMODj,pt

n

d∑
`=0

α`

(
|x|
`

)
d∑
`=0

pt−1∑
j=0

wjα
(j)
`

(|x|
`

)

MODa,pt−1

n

base-p period pt−1

Mahler ExpansionMOD Expansion

Function
Embedding
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Symmetric Function Embedding

Lemma

Let f : {0, 1}n → {0, 1} be a non-degenerate Boolean function. Then
there exists a set of indices S ⊆ [n] with |S| = ω(1), and a restriction
σ : [n]\S → {0, 1} such that f |σ is a non-trivial symmetric Boolean
function.

f(x1,x2,x3,x4,x5,x6,· · ·,xn−1,xn)

Symmetric: f(x1, 1,x3, 0, 0, 1,· · ·,xn−1, 1)

# Free variables = ω(1).

Proved by hypergraph Ramsey theory.
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Symmetric Function Embedding

Lemma

Let f : {0, 1}n → {0, 1} be a non-degenerate Boolean function. Then
there exists a set of indices S ⊆ [n] with |S| ≥ r(n) = ω(1), and a
restriction σ : [n]\S → {0, 1} such that f |σ is a non-trivial symmetric
Boolean function.

Suppose M(f) is a complexity measure. If M is non-increasing w.r.t.
restrictions (i.e., M(f) ≥M(f |σ)), then

∀ symmetric f, M(f) ≥ h(n)

=⇒ ∀ non-degenerated f, M(f) ≥ h(r(n)).

r(n) ≈
√

log∗(n) grows extremely slow, but suffices for our purpose.
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Mahler Expansion

For any symmetric f , let F be its univariate version, i.e., F (|x|) = f(x).

Several ways to represent F (t):

I expanding by tj (aka standard form);

I expanding by
(
t
j

)
(aka Mahler expansion);

I ...
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Several ways to represent F (t):

I expanding by tj (aka standard form);

I expanding by
(
t
j

)
(aka Mahler expansion);

I ...

Theorem (Mahler expansion)

Assume that f : {0, 1}n → {0, 1} is a symmetric Boolean function, and
F is the corresponding univariate version. Let d := max{n,m− 1}.
Then there exists a unique sequence α0, α1, · · · , αd ∈ Zm such that

d∑
j=0

αj

(
t

j

)
=

{
F (t), 0 ≤ t ≤ n;

0, n < m− 1 and n < t < m.

We call
∑d
j=0 αj

(
t
j

)
the Mahler expansion of F over Zm, and αj the

j-th Mahler coefficient.
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For any symmetric f , let F be its univariate version, i.e., F (|x|) = f(x).

Several ways to represent F (t):

I expanding by tj (aka standard form);

I expanding by
(
t
j

)
(aka Mahler expansion);

I ...

Let n = 2 and f(x) = x0 ∨ x1. On Z5, its Mahler expansion is

F (x) =

(
|x|
1

)
+ 4

(
|x|
2

)
+ 2

(
|x|
4

)
.

But deg5(f) = 2.
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Fact

degm(f) = max{` : α` 6≡ 0 (mod m), ` ≤ n}.
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MOD Function

For any symmetric f , let F be its univariate version, i.e., F (|x|) = f(x).

Several ways to represent F (t):

I expanding by tj (aka standard form);

I expanding by
(
t
j

)
(aka Mahler expansion);

I expanding by MOD functions, provided F is periodic.
I m-periodic: F (a) = F (a+m),∀a ∈ {0, 1, · · · , n−m}

If n ≥ m− 1, define

MODc,m
n (x) :=

{
0, |x| 6≡ c (mod m);

1, |x| ≡ c (mod m).

Every m-periodic function can be spanned by {MODa,m
n (x)}m−1a=0 .
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MOD Function

If f is mt-periodic but not mt−1-periodic, then we call πm(f) := mt the
base-m period of f .

I Example: The not-all-equal NAE function is defined as
NAEn(x1, . . . , xn) := I[∃i, j s.t. xi 6= xj ]. Then π3 (NAE3) = 3
while π3 (NAE4) = 9.
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I Example: The not-all-equal NAE function is defined as
NAEn(x1, . . . , xn) := I[∃i, j s.t. xi 6= xj ]. Then π3 (NAE3) = 3
while π3 (NAE4) = 9.

Theorem ([Wilson, 2006])

For prime p and positive integers t, k, denote d := (k− 1) ·ϕ(pt) + pt− 1.

Then for any n ≥ d, we have degpk(MOD0,pt

n ) = d.
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Symmetric f(x)
with base-p period pt

f(x)

pt−1∑
j=0

wjMODj,pt

n

d∑
`=0

α`

(
|x|
`

)
d∑
`=0

pt−1∑
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wjα
(j)
`

(|x|
`

)

MODa,pt−1

n

base-p period pt−1
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Combination of Different Expansions

The MOD expansion of f :

f(x) =

pt−1∑
j=0

wjMODj,pt

n (x). Let w := (w0, · · · , wpt−1)
>
.

The MOD expansion of MODi,pt−1

n :

MODi,pt−1

n (x) =

pt−1∑
j=0

v
(i)
j MODj,pt

n (x). Let v(i) :=
(
v
(i)
0 , · · · , v(i)pt−1

)>
.

f(x) is not pt−1 periodic =⇒ w /∈ span
{
v(0), · · · ,v(pt−1−1)

}
.
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Combination of Different Expansions

f(x) is not pt−1 periodic =⇒ w /∈ span
{
v(0), · · · ,v(pt−1−1)

}
.

Apply Mahler expansion to MODs, where α
(j)
` is the `-th Mahler

coefficient of MODj,pt

n :

f(x) =

pt−1∑
j=0

wjMODj,pt

n (x) =

d∑
`=0

pt−1∑
j=0

wjα
(j)
`

(|x|
`

) ,

where d is the degree of MODj,pt

n .

I Construct S ∈ Fϕ(p
t)×pt

p s.t. Si,j = (α
(j)
d−i/p

k−2) mod p.

I Verify that kerS = span
{
v(0), · · · ,v(pt−1−1)

}
.

I So Sw 6= 0, implying a high-order Mahler coefficient of f .
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From Primes to Their Product

Theorem

For any prime p, positive integer k, and non-trivial symmetric function
f : {0, 1}n → {0, 1} with sufficiently large n,

degpk(f) ≥ (p− 1) · k.

Goal:

degm(f) ≥ 1

2 + 1
p−1 + 1

q−1
· n.

If max{degp(f),degq(f)} ≥ n
2 , the inequality follows naturally.

Otherwise,

degpq(f) = max{degp(f), degq(f)} ≥ max

{(
1−

1

p

)
πp(f),

(
1−

1

q

)
πq(f)

}
.

By periodicity lemma, πp(f) + πq(f) > n+ 2.

Combine both to get degpq(f) > n+2
2+ 1

p−1+
1

q−1

> n
2+ 1

p−1+
1

q−1

.
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Instance with Factor 1/2

Lemma

If 1, a1, · · · , ak are linearly independent over Q, then for any ε > 0, there
exist infinitely many ` ∈ N+ such that `ai mod 1 ∈ (1− ε, 1) for all i.

Suppose m = p1 · · · pk. Select another prime q. Let ai := log q/ log pi.

Then 1, a1, · · · , ak are linearly independent over Q.

Thus, we have infinitely many ` s.t. ` · log q/ log pi mod 1 ∈ (1− ε, 1).

Therefore, prii /q
` ∈ (1, pεi ) where ri = d` · log q/ log pie.
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Instance with Factor 1/2

For fixed `, take n = 2q`, and consider the following symmetric function
f :

0 1 q` 2q`· · · · · · · · · · · ·

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

prii

f is prii -periodic, and hence degpi(f) ≤ prii − 1 [Wilson, 2006].

Finally,

degm(f)
CRT
= max{degpi(f)} ≤ max{prii } ≤

n

2
max{pεi}.

Then let ε→ 0.
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Concluding Remarks

I Ramsey-type argument requires super large n ≥ tower(poly(p, k)).
Could it be improved to something like n ≥ exp(poly(p, k))?

I Is it true that deg(f) = O
(
poly

(
degpq(f)

))
for all non-trivial

Boolean functions?

I Conjecture: degm(f) ≥ n/2− o(n) for all non-trivial symmetric
Boolean functions when m contains two different prime factors.

I A related conjecture: deg(f) ≥ n−O(1) for all non-trivial
symmetric Boolean functions. [Gathen and Roche, 1997]

I Best lower bound: deg(f) ≥ n−O(n0.525).
I Best instance: deg(f) = n− 3.
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I A related conjecture: deg(f) ≥ n−O(1) for all non-trivial
symmetric Boolean functions. [Gathen and Roche, 1997]

I Best lower bound: deg(f) ≥ n−O(n0.525).
I Best instance: deg(f) = n− 3.
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