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Abstract. For sink-free orientations in graphs of minimum degree at least 3, we show that there

is a deterministic approximate counting algorithm that runs in time 𝑂 ((𝑛73/𝜀72) log(𝑛/𝜀)), a near-

linear time sampling algorithm, and a randomised approximate counting algorithm that runs in time

𝑂 ((𝑛/𝜀)2 log(𝑛/𝜀)), where 𝑛 denotes the number of vertices of the input graph and 0 < 𝜀 < 1 is the

desired accuracy. All three algorithms are based on a local implementation of the sink popping method

(Cohn, Pemantle, and Propp, 2002) under the partial rejection sampling framework (Guo, Jerrum, and Liu,

2019).

1. Introduction

The significance of counting has been recognised in the theory of computing since the pioneering

work of Valiant [Val79b, Val79a]. In the late 80s, a number of landmark approximate counting algorithms

[JS89, DFK91, JS93] were discovered. A common ingredient of these algorithms is the computational

equivalence between approximate counting and sampling for self-reducible problems [JVV86]. The

reduction from counting to sampling decomposes the task into a sequence of marginal probability

estimations, each of which is tractable for sampling techniques such as Markov chains. However, while

only the marginal probability of one variable is in question, simulating Markov chains requires keeping

track of the whole state of the instance, and thus is obviously wasteful. It is more desirable to draw

samples while accessing only some local structure of the target variable. We call such algorithms local

samplers.

The first such local sampler was found by Anand and Jerrum [AJ22], who showed how to efficiently

generate perfect local samples for spin systems even when the underlying graph is infinite. Using local

information is essential here as it is not possible to perfectly simulate the whole state. Subsequently,

Feng, Guo, Wang, Wang, and Yin [FGW
+
23] found an alternative local sampler, namely the so-called

coupling towards the past (CTTP) method, which yields local implementations of rapid mixing Markov

chains. It is also observed that sufficiently efficient local samplers lead to immediate derandomisation via

brute-force enumeration. Moreover, local samplers are crucial to obtain sub-quadratic time approximate

counting algorithms for spin systems [AFF
+
25]. Thus, local samplers are highly desirable algorithms

as they can lead to fast sampling, fast approximate counting, and deterministic approximate counting

algorithms.

Guo, Jerrum, and Liu [GJL19] introduced partial rejection sampling (PRS) as yet another efficient

sampling technique. This method generalises the cycle-popping algorithm for sampling spanning

trees [Wil96] and the sink-popping algorithm for sampling sink-free orientations [CPP02]. It also

has close connections with the Lovász local lemma [EL75]. For extremal instances (in the sense of

[KS11]), PRS is just the celebrated Moser-Tardos algorithm for the constructive local lemma [MT10]. The

most notable application of PRS is the first fully polynomial-time randomised approximation scheme

(FPRAS) for all-terminal network reliability [GJ19]. On the other hand, it is still open if all-terminal
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reliability and counting sink-free orientations admit deterministic fully polynomial-time approximation

schemes (FPTASes). Thus, in view of the aforementioned derandomisation technique [FGW
+
23], a local

implementation of PRS is a promising way to resolve these open problems.

In this paper, we make some positive progress for sink-free orientations (SFOs). Given an undirected

graph 𝐺 = (𝑉, 𝐸), a sink-free orientation of 𝐺 is an orientation of edges such that each vertex has at

least one outgoing edge. SFOs were first studied by Bubley and Dyer [BD97a] as a restricted case of Sat.
1

They showed that exact counting of SFOs is #P-complete, and thus is unlikely to have a polynomial-time

algorithm. For approximate counting and sampling, in [BD97b], they showed that a natural Markov

chain has an 𝑂 (𝑚3) mixing time, where 𝑚 is the number of edges. Later, Cohn, Pemantle, and Propp

[CPP02] introduced an exact sampler, namely the aforementioned sink-popping algorithm that runs in

𝑂 (𝑛𝑚) time in expectation, where 𝑛 is the number of vertices. Using the PRS framework, Guo and He

[GH20] improved the running time of sink-popping to 𝑂 (𝑛2), and constructed instances where this

running time is tight. It is open whether a faster sampling algorithm or an FPTAS exists.

Our main result is a local sampler based on PRS for SFOs. Using this local sampler, for graphs

of minimum degree 3, we obtain a deterministic approximate counting algorithm that runs in time

𝑂 ((𝑛73/𝜀72) log(𝑛/𝜀)), a near-linear time sampling algorithm, and a randomised approximate counting

algorithm that runs in time 𝑂 ((𝑛/𝜀)2 log(𝑛/𝜀)), where 𝜀 is the given accuracy. All three algorithms

appear difficult to obtain using previous techniques. We will describe the results in more detail in the

next section.

1.1. Our contribution and technique overview. Our local sampler works for a slight generalisation

of SFOs, which are intermediate problems required by the standard counting to sampling reduction

[JVV86]. In these problems, a subset 𝑆 of vertices is specified, which are required to be sink-free, and

the task is to estimate the probability of a vertex 𝑣 not in 𝑆 not being a sink.

Before describing our technique, let us first review the sink-popping algorithm, (which is a special

case of PRS and the same as the Moser-Tardos algorithm [MT10] as the instance is extremal). We orient

each edge uniformly at random. As long as there is a sink in 𝑆, we select one such vertex, arbitrarily,

and rerandomise all edges incident to it, until there is no sink belong to 𝑆.

Our key observation is that it is unnecessary to simulate all edges to decide if 𝑣 is a sink. In particular,

if, at any point of the execution of the algorithm, 𝑣 is a sink, then no adjacent edges will ever be

resampled and 𝑣 stays a sink till the algorithm finishes. On the other hand, if at any point 𝑣 belongs

to a cycle, a path leading to a cycle, or a nonempty path leading to some vertex not in 𝑆, then the

orientations of all edges involved will not be resampled, and 𝑣 stays a non-sink until the algorithm

terminates. Thus, this observation gives us an early termination criterion for determining whether

𝑣 is a sink or not. Moreover, since in the sink-popping algorithm, the order of sinks popped can be

arbitrary, we can reveal the random orientation of edges strategically, and pop sinks if necessary. To be

more precise, we first reveal the edges adjacent to 𝑣 one by one. Once there is an outgoing edge (𝑣, 𝑢),
we then move to 𝑢 and repeat this process. If any sink is revealed, we erase the orientations of all its

adjacent edges and backtrack. Eventually, one of the two early termination rules above will kick in, and

this gives us a local sample.

Ideally, we want our local sampler to run in 𝑂 (log 𝑛) time, where 𝑛 is the number of vertices.

Unfortunately, the one described above does not necessarily terminate this fast. To see this, consider

a sequence of degree 2 vertices, where at each step there is equal probability to move forward or

backtrack. Resolving such a path of length ℓ would require Θ(ℓ2) time. On the other hand, when the

minimum degree of the input graph is at least 3, the length of the path followed by the sampler forms a

submartingale. The vertex 𝑣 can be a sink only if this path has length 0. Thus, once the length of the

path is at least 𝐶 log 𝑛 for some constant 𝐶, the probability of 𝑣 being a sink is very small. This allows

us to truncate the local sampler with only a small error.

The FPTAS for #SFO follows from the derandomisation method of [FGW
+
23] to the truncated local

sampler. By 𝜀-approximation, we mean an estimate 𝑍 such that 1 − 𝜀 ≤ 𝑍
𝑍
≤ 1 + 𝜀, where 𝑍 is the

target quantity. Also, all our algorithms work for not necessarily simple graphs.

1
As a side note, we remark that SFOs are also introduced in the context of distributed computing under the name of

sinkless orientations, where they are used to give a lower bound for the distributed Lovász local lemma [BFH
+

16].
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Theorem 1.1 (deterministic approximate counting). For graphs with minimum degree at least 3, there
exists a deterministic algorithm that, given 0 < 𝜀 < 1, outputs an 𝜀-approximation to the number of
sink-free orientations with running time 𝑂 ((𝑛73/𝜀72) log(𝑛/𝜀)), where 𝑛 is the number of vertices.

Although high, the constant exponent in the running time of Theorem 1.1 is actually the most

interesting feature of our algorithm. In contrast, the running time of most known FPTASes [Wei06,

BG06, BGK
+
07, HSV18, Bar16, PR17, Moi19, FGW

+
23, CFG

+
24] has an exponent that depends on some

parameter (such as the maximum degree) of the input graph. There are exceptions, for example,

[LLY13, GL18], but the exponents of their running times still depend on the parameters of the problem

(not of the instance).

For fast sampling, we need a slight modification of the idea above to sample orientations of edges

one by one, resulting in the following approximate sampler.

Theorem 1.2 (fast sampling). For graphs with minimum degree at least 3, there exists a sampling algorithm
that, given 0 < 𝜀 < 1, outputs a random orientation 𝜎 such that 𝜎 is 𝜀-close to a uniform random sink-free
orientation in total variation distance, with running time 𝑂

(
𝑚 log

(
𝑚
𝜀

) )
, where 𝑚 is the number of edges.

Our sampler runs in 𝑂 (𝑚) time
2

instead of the 𝑂 (𝑛2) time that sink-popping requires, at the cost

of generating an approximate sample instead of a perfect sample. This improves over sink-popping

when 𝑚 = 𝑜(𝑛2/log 𝑛) and leads to a faster FPRAS using the counting-to-sampling reduction [JVV86].

In fact, the running time of the FPRAS can be improved further by directly invoking the truncated local

sampler in the reduction.

Theorem 1.3 (fast approximate counting). For graphs with minimum degree at least 3, there exists
a (randomised) algorithm that, given 0 < 𝜀 < 1, outputs a quantity that is an 𝜀-approximation with
probability at least 3/4 to the number of sink-free orientations. The running time is 𝑂 ((𝑛/𝜀)2 log(𝑛/𝜀)),
where 𝑛 is the number of vertices.

The success probability 3/4 in Theorem 1.3 is standard in the definition of FPRAS, and can be easily

amplified by taking the median of repeated trials and applying the Chernoff bound.

Note that directly combining Theorem 1.2 with the counting-to-sampling reduction results in an

𝑂 (𝑛𝑚/𝜀2) running time. Theorem 1.3 is faster when 𝑚 = 𝜔(𝑛). Previously, the best running time for

approximate counting is 𝑂 (𝑛3/𝜀2), via combining the 𝑂 (𝑛2) time sink-popping algorithm [GH20] with

simulated annealing (see, for example, [GH20, Lemma 12]). Theorem 1.3 improves over this by roughly

a factor of 𝑛. In very dense graphs (when 𝑚 = Ω(𝑛2)), Theorem 1.3 achieves near-linear time, which

appears to be rare for approximate counting.

There are a plethora of fast sampling and deterministic approximate counting techniques by now.

However, it appears difficult to achieve our results without the new local sampler. For example, the cou-

pling of Bubley and Dyer [BD97b] does not seem to improve with the minimum degree requirement. On

a similar note, the recent deterministic counting technique of [CFG
+
24] requires a distance-decreasing

Markov chain coupling, whereas the Bubley-Dyer coupling is distance non-increasing. In any case,

even if the technique of [CFG
+
24] applied, it would not imply a running time with a constant exponent.

Other fast sampling and FPTAS techniques, such as spectral independence [ALO20, CLV21, CG24],

correlation decay [Wei06, LLL14], and zero-freeness of polynomials [Bar16, PR17, GLLZ21], all seem

difficult to apply. The main obstacle is that these techniques typically make use of properties that hold

under arbitrary conditionings. However, for SFO, even if we start with a graph of minimum degree 3,

conditioning the edges can result in a graph that is effectively a cycle, in which case no nice property

holds. Our techniques, in contrast, require no hereditary properties and thus can benefit from the

minimum degree requirement.

One much less obvious alternative approach to FPTAS is via the connection of the local lemma. In

particular, because SFOs form extremal instances, their number can be computed via the independence

polynomial evaluated at negative weights on the dependency graph. (We also see this fact in Section 4.1.)

Normally this approach would not be efficient, because the dependency graph is usually exponentially

large (for example for all-terminal reliability), but in the case of SFOs, the dependency graph is just the

2
The 𝑂 notation hides logarithmic factors.
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input graph itself. There are more than one FPTASes [PR17, HSV18] for the independence polynomial

at negative weights. However, neither appears able to recover Theorem 1.1. With the minimum degree

≥ 3 assumption, the probability vector for SFOs is within the so-called Shearer’s region, where both

algorithms apply.
3

The downside is that the running time of both algorithms has the form (𝑛/𝜀)𝑂 (log 𝑑)
,
4

where 𝑑 is the maximum degree of the graph. Thus, in the setting of Theorem 1.1, these algorithms run

in quasi-polynomial time instead. A more detailed discussion is given in Section 4.2.

The rest of the paper is organised as follows. In Section 2, we introduce our local sampler. It is

then analysed in Section 3. The main theorems are shown in Section 4. We conclude with a few open

problems in Section 5.

2. A local sampler for sink-free orientations

Fix 𝐺 = (𝑉, 𝐸) as an undirected graph. An orientation 𝜎 of 𝐺 is an assignment of a direction to each

edge, turning the initial graph into a directed graph. For any 𝑆 ⊆ 𝑉 , let Ω𝑆 be the set of 𝑆-sink-free

orientations of 𝐺, i.e., the set of orientations such that each vertex 𝑣 ∈ 𝑆 is not a sink. Thus, Ω𝑉 is

the set of all (normal) sink-free orientations of 𝐺. When |Ω𝑆 | ≠ 0, we use 𝜇𝑆 to denote the uniform

distribution over Ω𝑆 . For two adjacent vertices 𝑢, 𝑣 ∈ 𝑉 , we use {𝑢, 𝑣} to denote the undirected edge

and (𝑢, 𝑣) to denote the directed edge, from 𝑢 to 𝑣.

We apply the following standard counting-to-sampling reduction [JVV86]. Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
be arbitrarily ordered and, for each 0 ≤ 𝑖 ≤ 𝑛, define 𝑉𝑖 = {𝑣1, 𝑣2, . . . , 𝑣𝑖}. Then, |Ω𝑉 | can be

decomposed into a telescopic product of marginal probabilities:

(1) |Ω𝑉 | =
��Ω𝑉0

�� · 𝑛∏
𝑖=1

��Ω𝑉𝑖

����Ω𝑉𝑖−1

�� = 2 |𝐸 | ·
𝑛∏
𝑖=1

𝜇𝑉𝑖−1 (𝑣𝑖 is not a sink).

Thus, our goal becomes to estimate 𝜇𝑆 (𝑣 is not a sink) for any 𝑆 ⊆ 𝑉 and 𝑣 ∉ 𝑆.

We view 𝑆-sink-free orientations under the variable framework of the Lovász local lemma. Here, each

edge corresponds to a variable that indicates its direction, and each vertex in 𝑆 represents a bad event of

being a sink. An instance is called extremal if any two bad events are independent (namely, they share

no common variable) or disjoint. It is easy to see that all instances to the 𝑆-sink-free orientation problem

are extremal: if a vertex is a sink then none of its neighbors can be a sink. For extremal instances like

this, the celebrated Moser-Tardos algorithm [MT10] is guaranteed to output an assignment avoiding all

bad events uniformly at random [GJL19]. This is summarised in Algorithm 1. Note that when 𝑆 = 𝑉 ,

Algorithm 1 is the sink-popping algorithm by Cohn, Pemantle, and Propp [CPP02].

Algorithm 1: PRS algorithm for generating an 𝑆-sink-free orientation

Input :an undirected graph 𝐺 = (𝑉, 𝐸) and a subset of vertices 𝑆 ⊆ 𝑉

Output :an orientation 𝜎 of 𝐺

1 orient each edge 𝑒 ∈ 𝐸 uniformly at random and independently to obtain an orientation 𝜎;

2 while ∃𝑣 ∈ 𝑆 s.t. 𝑣 is a sink in 𝜎 do
3 choose such a 𝑣 arbitrarily;

4 resample the orientation of all edges incident to 𝑣 in 𝜎 uniformly at random;

5 return 𝜎;

The following lemma is a direct corollary from [GJL19, Theorem 8] and SFOs being extremal.

Lemma 2.1. If |Ω𝑆 | ≠ 0, Algorithm 1 terminates almost surely and returns an orientation distributed
exactly as 𝜇𝑆 .

3
In [PR17], only a uniform bound is stated, but one can introduce a scaling variable 𝑡 and make a new polynomial in 𝑡, so

that their algorithm works in the Shearer’s region.

4
To be more precise, the hidden constants in the exponents decrease in the multiplicative “slack” of how close the evaluated

point is to the boundary of Shearer’s region. For SFOs, when constant degree vertices are present, the slack is a constant, and

so are the hidden constants in the exponents.
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Figure 1. Illustration of Lemma 2.2. Shaded vertices are in the set 𝑆. Once these

patterns are formed, thick red edges would never be resampled in Algorithm 1.

We remark that the only possible case for Ω𝑆 = ∅ is when 𝑆 forms a tree and not connected to any

vertex not in 𝑆.

Algorithm 1 requires one to generate a global sample when estimating 𝜇𝑆 (𝑣 is not a sink) for some

𝑣 ∉ 𝑆, which is wasteful. The following observation is crucial to turning it into a local sampler.

Lemma 2.2 (criteria for early termination). Suppose |Ω𝑆 | ≠ 0. For any 𝑣 ∉ 𝑆, 𝑣 is a sink upon the
termination of Algorithm 1 if and only if

(a) 𝑣 becomes a sink at some iteration.
Conversely, 𝑣 is not a sink upon the termination of Algorithm 1 if and only if one of the following holds:

(b1) a directed cycle 𝐶 containing 𝑣, or a directed path 𝑃 containing 𝑣 which ends in a directed cycle 𝐶
is formed in some iteration, or

(b2) a nonempty directed path 𝑃 from 𝑣 to some 𝑢 ∉ 𝑆 is formed in some iteration.

Proof. First, consider (a). If 𝑣 becomes a sink at any point, then for every 𝑤 ∈ 𝑆 which is a neighbour

of 𝑣, the edge (𝑤, 𝑣) is oriented towards 𝑣. Since 𝑣 ∉ 𝑆, the edge (𝑤, 𝑣) will not be resampled via 𝑣,

and could only be resampled by 𝑤 becoming a sink. Since 𝑤 cannot become a sink without resampling

(𝑤, 𝑣), 𝑣 will remain a sink. The other implication is obvious.

Now for (b1) and (b2), we first consider the forward implications. For a cycle 𝐶, every vertex 𝑢 ∈ 𝐶
has an edge pointing outwards towards some 𝑤 ∈ 𝐶 which also has an edge pointing outwards. None

of these edges can be resampled without another edge 𝑒 ∈ 𝐶 being resampled first, so no vertex in the

cycle will ever become a sink again.

Consider a path 𝑃 that ends outside of 𝑆 or in a cycle. Inductively, we see that no edge on this path

will be resampled without the edge after it being resampled. The edge connected to the cycle or 𝑆𝑐 will

not be resampled, since that vertex may never be a sink, so no vertex in 𝑃 can become a sink.

For the reverse implication, suppose 𝑣 is eventually not a sink. In that case, there must be some edge

(𝑣, 𝑤) pointing towards a neighbour 𝑤. If 𝑤 is a sink, then 𝑤 ∉ 𝑆 and we are in case (b2). Otherwise, 𝑤

is not a sink, and there is an adjacent edge pointing away from 𝑤, and we repeat this process. As the

set of vertices is finite, if vertices considered in this process are all in 𝑆, then there must be repeated

vertices eventually, in which case we are in (b1). □

An illustration of Lemma 2.2 is given in Figure 1. Based on Lemma 2.2, we design a local sampling

algorithm for determining whether some vertex 𝑣 ∉ 𝑆 is a sink or not, given in Algorithm 2. We assume

that the undirected graph 𝐺 = (𝑉, 𝐸) is stored as an adjacency list where the neighbors of each vertex

are arbitrarily ordered. Algorithm 2 takes as input some 𝑆 ⊆ 𝑉 and 𝑣 ∉ 𝑆, returns an indicator variable

𝑥 ∈ {0, 1} such that Pr [𝑥 = 1] = 𝜇𝑆 (𝑣 is not a sink). We treat the path 𝑃 as a subgraph, and 𝑉 (𝑃)
denotes the vertex set of 𝑃. When we remove the last vertex from 𝑃, we remove it and the adjacent

edge as well. Informally, Algorithm 2 starts from the vertex 𝑣, and reveal adjacent edges one by one.

If there is any edge pointing outward, say (𝑣, 𝑢), we move to 𝑢 and reveal edges adjacent to 𝑢. If a

sink 𝑤 ∈ 𝑆 is formed, then we mark all adjacent edges of 𝑤 as unvisited and backtrack. This induces

a directed path starting from 𝑣. We repeat this process until any of the early termination criteria of

Lemma 2.2 is satisfied, in which case we halt and output accordingly.
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Algorithm 2: Sample(𝐺, 𝑆, 𝑣)
Input :an undirected graph 𝐺 = (𝑉, 𝐸), a subset of vertices 𝑆 ⊆ 𝑉 , and a vertex 𝑣 ∉ 𝑆;

Output :a random value 𝑥 ∈ {0, 1};
1 Let 𝑃 be a (directed) path initialised as 𝑃 = (𝑣);
2 Initialise a mapping 𝑀 : 𝐸 → {visited, unvisited} so that ∀𝑒 ∈ 𝐸 , 𝑀 (𝑒) = unvisited;

3 while |𝑉 (𝑃) | ≥ 1 do
4 Let 𝑢 be the last vertex of 𝑃;

5 if |𝑉 (𝑃) | ≥ 2 and 𝑢 ∉ 𝑆 then return 1;

6 if all edges incident to 𝑢 are marked visited then
7 mark all edges incident to 𝑢 as unvisited;

8 remove 𝑢 from 𝑃;

9 else
10 let 𝑒 = {𝑢, 𝑤} be the first unvisited edge incident to 𝑢;

11 mark 𝑒 as visited;

12 with probability 1/2 do
13 if 𝑤 ∈ 𝑉 (𝑃), or there is a visited edge (𝑤, 𝑤′) for some 𝑤′ ∈ 𝑉 (𝑃) then return 1;

14 append 𝑤 to the end of 𝑃;

15 return 0;

3. Analysis of the local sampler

In this section, we analyse the correctness and efficiency of Algorithm 2.

Lemma 3.1 (correctness of Algorithm 2). Let 𝐺 = (𝑉, 𝐸) be a graph. For any 𝑆 ⊆ 𝑉 such that |Ω𝑆 | ≠ 0
and any 𝑣 ∉ 𝑆, Sample(𝐺, 𝑆, 𝑣) terminates almost surely and upon termination, returns an 𝑥 ∈ {0, 1}
such that

Pr [𝑥 = 1] = 𝜇𝑆 (𝑣 is not a sink).

Proof. We claim that there exists a coupling between the execution of Algorithm 1 (with input 𝐺, 𝑆 and

output 𝜎), and Sample(𝐺, 𝑆, 𝑣) (with output 𝑥), such that

(2) 𝑣 is not a sink under 𝜎 ⇐⇒ 𝑥 = 1.
The claim implies the lemma because of Lemma 2.1.

To prove the claim, we first construct our coupling. We use the resampling table idea of Moser

and Tardos [MT10]. For each edge, we associate it with an infinite sequence of independent random

variables, each of which is a uniform orientation. This forms the “resampling table”. Our coupling uses

the same resampling table for both Algorithm 1 and Algorithm 2. As showed in [MT10], the execution of

Algorithm 1 can be viewed as first constructing this (imaginary) table, and whenever the orientation of

an edge is randomised, we just reveal and use the next random variable in the sequence. For Algorithm 2,

we reveal the orientation of an edge when its status changes from unvisited to visited in Line 11. We

execute Line 14 if the random orientation from the resampling table is (𝑢, 𝑤), and otherwise do nothing.

Namely, in the latter case, the revealed orientation is (𝑤, 𝑢), and we just move forward the “frontier” of

that edge by one step in the resampling table. We claim that (2) holds with this coupling.

Essentially, the claim holds since for extremal instances, given a resampling table, the order of the

bad events resampled in Algorithm 1 does not affect the output. This fact is shown in [GJ21, Section 4].

(See also [CPP02, Lemma 2.2] for the case of 𝑆 = 𝑉 .) We can “complete” Algorithm 2 after it finishes.

Namely, once Algorithm 2 terminates, we randomise all edges that are not yet oriented, and resample

edges adjacent to sinks until there are none, using the same resampling table. Note that at the end of

Algorithm 2, some edges may be marked unvisited but are still oriented. Suppose that the output of

the completed algorithm is 𝜎′, an orientation of all edges. This completed algorithm is just another

implementation of Algorithm 1 with a specific order of resampling bad events. Thus the fact mentioned

earlier implies that 𝜎′ = 𝜎.

6



On the other hand, the termination conditions of Algorithm 2 correspond to the cases of Lemma 2.2.

One can show, via a simple induction over the while loop, that at the beginning of the loop, the path 𝑃 is

always a directed path starting from 𝑣, and all other visited edges point towards the path 𝑃. This implies

that Line 13 corresponds to case (b1) in Lemma 2.2, Line 5 corresponds to case (b2), and exiting the

while loop in Line 3 corresponds to case (a). When Algorithm 2 terminates, we have decided whether

or not 𝑣 is a sink. By Lemma 2.2, this decision stays the same under 𝜎′. As 𝜎′ = 𝜎, (2) holds. □

We then analyse the efficiency of Algorithm 2. The main bottleneck is when there are degree 2
vertices. It would take Ω(ℓ2) time to resolve an induced path of length ℓ. We then focus on the

case where the minimum vertex degree is at least 3. Note that in this case we have Ω𝑆 ≠ ∅ for any

𝑆 ⊆ 𝑉 . For two distributions 𝑃 and 𝑄 over the state space Ω, their total variation distance is defined

by 𝑑TV(𝑃,𝑄) ≔
∑

𝑥∈Ω |𝑃(𝑥) − 𝑄(𝑥) |/2. For two random variables 𝑥 ∼ 𝑃 and 𝑦 ∼ 𝑄, we also write

𝑑TV(𝑥, 𝑦) to denote 𝑑TV(𝑃,𝑄). Then we have the following lemma.

Lemma 3.2 (efficient truncation of Algorithm 2). Let 𝐺 = (𝑉, 𝐸) be a graph with minimum degree at
least 3. Let 𝑆 ⊆ 𝑉 , 𝑣 ∉ 𝑆 and 0 < 𝜀 < 1. Let 𝑥 be the output of Sample(𝐺, 𝑆, 𝑣), and 𝑥′ constructed as

• if Sample(𝐺, 𝑆, 𝑣) terminates within 72 ln(73/𝜀) executions of Line 12, let 𝑥′ = 𝑥;
• otherwise, let 𝑥′ = 1.

Then, it holds that
𝑑TV(𝑥, 𝑥′) ≤ 𝜀.

Proof. We track the length of the path 𝑃 during the execution of Algorithm 2. When an edge is chosen

in Line 4 and sampled in Line 12 of Algorithm 2, the following happens:

• with probability 1/2, 𝑤 is appended to 𝑃 and the length of 𝑃 increases by one;

• with probability 1/2, {𝑢, 𝑤} is marked as visited, and the length of 𝑃 decreases by one in the

next iteration if and only if {𝑢, 𝑤} was the last unvisited edge incident to 𝑢.

Let 𝑋𝑖 be the random variable denoting the length of 𝑃 after the 𝑖-th execution of Line 12 in Algorithm 2.

Then the observation above implies that {𝑋𝑖}𝑖≥0 forms a submartingale. We construct another sequence

of random variables {𝑌𝑖}𝑖≥0 modified from {𝑋𝑖}𝑖≥0 as follows:

• 𝑌0 = 𝑋0 = 1.

• At the 𝑖-th execution of Line 12 in Algorithm 2:

– if {𝑢, 𝑤} is the only unvisited edge incident to 𝑢, set 𝑌𝑖+1 = 𝑋𝑖+1 − 𝑋𝑖 + 𝑌𝑖 ,
– otherwise, set 𝑌𝑖+1 = 𝑋𝑖+1 − 𝑋𝑖 + 𝑌𝑖 − 1/2.

It can be verified that the sequence {𝑌𝑖}𝑖≥0 is a martingale.

Claim 3.3. For any 𝑖 ≥ 0, 𝑋𝑖 − 𝑌𝑖 ≥ 𝑖/4.

Proof. Note that 𝑋𝑖 −𝑌𝑖 = 𝑋𝑖−1 −𝑌𝑖−1 + 𝑐𝑖 where 𝑐𝑖 = 0 if {𝑢, 𝑤} is the only unvisited edge incident to

𝑢 at the 𝑖-th execution of Line 12 in Algorithm 2, and 𝑐𝑖 = 1/2 otherwise. Then we can write 𝑋𝑖 − 𝑌𝑖 as

𝑋𝑖 − 𝑌𝑖 = 𝑋0 − 𝑌0 +
𝑖∑︁
𝑗=1

𝑐 𝑗 .

For any 𝑖 such that 𝑐𝑖 = 0, let 𝑖′ be the last index such that 𝑐𝑖′ = 0, or 𝑖′ = 0 if no such 𝑖′ exists. Since the

minimum degree of 𝐺 is at least 3, when we append any vertex 𝑢 to 𝑃, there are at least two unvisited

edges incident to 𝑢. It implies that there must be some 𝑗 such that 𝑖′ < 𝑗 < 𝑖 and 𝑐 𝑗 = 1/2. Thus

𝑋𝑖 − 𝑌𝑖 =
∑𝑖

𝑘=1 𝑐𝑘 ≥ 𝑖/4. □

Next we show that if Algorithm 2 doesn’t terminate after 72 ln(73/𝜀) steps, with high probability

the length of the path will not return to 0. As {𝑌𝑖}𝑖≥0 is a martingale and |𝑌𝑖+1 − 𝑌𝑖 | ≤ 3/2 for all 𝑖 ≥ 0,

the Azuma–Hoeffding inequality implies that, for any 𝑇 > 0 and 𝐶 > 0,

Pr [𝑌𝑇 − 𝑌0 ≤ −𝐶] ≤ exp
(
𝐶2

9𝑇/2

)
.(3)

Thus,

Pr [𝑋𝑇 = 0] ≤ Pr [𝑌𝑇 ≤ −𝑇/4] ≤ Pr [𝑌𝑇 − 𝑌0 ≤ −𝑇/4] ≤ exp (−𝑇/72) ,
7



where the first inequality is by Claim 3.3, and the last inequality is by plugging 𝐶 = 𝑇/4 into (3). Then,

we have

∞∑︁
𝑇=⌈72 ln 73

𝜀
⌉

Pr [𝑋𝑇 = 0] ≤
∞∑︁

𝑇=⌈72 ln 73
𝜀
⌉

exp (−𝑇/72) ≤
∞∑︁

𝑇=72 ln 73
𝜀

exp (−𝑇/72) = 𝜀

73(1 − e−1/72)
< 𝜀.

(4)

To finish the proof, we couple 𝑥 and 𝑥′ by the same execution of Algorithm 2. Thus, if it terminates

within 72 ln(73/𝜀) executions of Line 12, then 𝑥 = 𝑥′ with probability 1. If not, (4) implies that 𝑥 = 0
with probability at most 𝜀. As we always output 𝑥 = 1 in this case, 𝑥′ ≠ 𝑥 with probability at most 𝜀,

which finishes the proof. □

Note that Lemma 3.2 does not require Ω𝑆 ≠ ∅. This is because it is implied by the minimum degree

requirement. This implication is an easy consequence of the symmetric Shearer’s bound. It is also

directly implied by Lemma 4.1 which we show next.

4. Applications of the local sampler

We show the main theorems in this section. Lemma 3.2 implies an additive error on the truncated

estimator. As we are after relative errors in approximate counting, we need a lower bound of the

marginal ratio.

Lemma 4.1. Let 𝐺 = (𝑉, 𝐸) be a graph with a minimum degree at least 3. For any 𝑆 ⊆ 𝑉 and 𝑣 ∉ 𝑆, it
holds that |Ω𝑆 | ≠ 0 and

𝜇𝑆 (𝑣 is not a sink) > 1
2 .

The proof of Lemma 4.1 can be viewed as an application of the symmetric Shearer’s Lemma [She85]

on SFO, and is deferred to Section 4.1. Note that the minimum degree requirement is essential for such

a marginal lower bound to hold, as the marginal ratio in Lemma 4.1 can be of order 𝑂 (1/𝑛) when 𝐺 is

a cycle and 𝑆 = 𝑉 \ {𝑣}.
We then show the two approximate counting algorithms first, namely Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. By (1), we just need to 𝜀/(2𝑛)-approximate 𝜇𝑉𝑖−1 (𝑣𝑖 is not a sink) for each 𝑖 to

𝜀-approximate |Ω𝑉 |, the number of sink-free orientations to 𝐺. The only random choice Algorithm 2

makes is Line 12. In view of Lemma 3.2, we enumerate the first 72 ln(292𝑛/𝜀) random choices of

choices Algorithm 2, and just output 1 if the algorithm does not terminate by then. Let the estimator be

the average of all enumeration. Note that Lemma 4.1 implies that Ω𝑉𝑖
≠ ∅ for any 𝑖. Then, Lemmas 3.1

and 3.2 imply that the estimator is an 𝜀/(4𝑛) additive approximation. By Lemma 4.1, it is also an 𝜀/(2𝑛)
relative approximation, which is what we need.

For the running time, there are 𝑛 marginals, it takes exp(72 ln(292𝑛/𝜀)) enumerations for each

marginal probability, and each enumeration takes time at most 𝑂 (ln(292𝑛/𝜀)) time. Therefore, the

overall running time is bounded by 𝑂 (𝑛(𝑛/𝜀)72 log(𝑛/𝜀)). □

Proof of Theorem 1.3. We use (1) again. Denote 𝜈𝑖 = 𝜇𝑉𝑖−1 (𝑣𝑖 is not a sink) and 𝜈 =
∏𝑛

𝑖=1 𝜈𝑖 . Let 𝑋𝑖 ≔
1
𝑛

∑𝑛
𝑖=1 𝑥

′
𝑖,𝑡

be the average of 𝑛 independent samples from Algorithm 2 truncated after 72 ln(73×12𝑛/𝜀)
executions of Line 12. Let 𝑋 ≔

∏𝑛
𝑖=1 𝑋𝑖 be an estimator for 𝜈.

For any 𝑖 and 𝑡, let �̃�𝑖 be the expectation of 𝑥𝑖,𝑡 (note that it does not depend on 𝑡). By Lemmas 3.1

and 3.2, |�̃�𝑖 − 𝜈𝑖 | ≤ 𝜀
12𝑛 . By Lemma 4.1, 1 − 𝜀

6𝑛 ≤
�̃�𝑖
𝜈𝑖
≤ 1 + 𝜀

6𝑛 . Let �̃� =
∏𝑛

𝑖=1 �̃�𝑖 so that E
[
𝑋
]
= �̃�. Then,

as 0 < 𝜀 < 1,

1 − 𝜀

3 ≤
�̃�

𝜈
≤ 1 + 𝜀

3 .(5)

We bound Var
[
𝑋𝑖

]
and Var

[
𝑋
]

next. First,

Var
[
𝑋𝑖

]
= Var

[
1
𝑛

𝑛∑︁
𝑡=1

𝑥′𝑖,𝑡

]
=

1
𝑛2

𝑛∑︁
𝑡=1

Var
[
𝑥′𝑖,𝑡

]
≤ 1

𝑛
,
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as each 𝑥′
𝑖,𝑡

is an indicator variable. Then,

Var
[
𝑋
](

E
[
𝑋
] )2 =

E
[
𝑋2](

E
[
𝑋
] )2 − 1 =

∏𝑛
𝑖=1 E

[
𝑋2
𝑖

]
∏𝑛

𝑖=1

(
E
[
𝑋𝑖

] )2 − 1 =

𝑛∏
𝑖=1

©«1 +
Var

[
𝑋𝑖

](
E
[
𝑋𝑖

] )2

ª®®¬ − 1

≤
(
1 + 4

𝑛

)𝑛
− 1 < e4 − 1 < 54.(by Lemma 4.1)

To further reduce the variance, let 𝑋 be the average of 𝑁 independent samples of 𝑋 , where 𝑁 ≔

⌈36 × 54/𝜀2⌉. Then, Var[𝑋] ≤ Var[𝑋]
𝑁

. By Chebyshev’s bound, we have

Pr
[���𝑋 − �̃���� ≥ 𝜀

3 · �̃�
]
≤ 9Var[𝑋]

𝜀2�̃�2 ≤ 9 × 54𝜀2�̃�2

36 × 54 · 1
𝜀2�̃�2 ≤

1
4 .

Thus with probability at least
3
4 , we have that (1 − 𝜀

3 ) �̃� ≤ 𝑋 ≤ (1 + 𝜀
3 ) �̃�. By (5), when this holds,

(1 − 𝜀)𝜈 ≤ 𝑋 ≤ (1 + 𝜀)𝜈. It is then easy to have an 𝜀-approximation of |Ω𝑉 |.
For the running time, each sample 𝑥′

𝑖,𝑡
takes 𝑂 (log(𝑛/𝜀)) time. We draw 𝑛 samples for each of the

𝑛 vertices, and we repeat this process 𝑁 = 𝑂 (𝜀−2) times. Thus, the total running time is bounded by

𝑂 ((𝑛/𝜀)2 log(𝑛/𝜀)). □

For Theorem 1.2, we will need a modified version of Algorithm 2 to sample from the marginal

distributions of the orientation of edges. This is given in Algorithm 3. It takes as input a subset of

vertices 𝑆 ⊆ 𝑉 and an edge 𝑒 ∈ 𝐸 , then outputs a random orientation 𝜎𝑒 following the marginal

distribution induced from 𝜇𝑆 on 𝑒. The differences between Algorithm 2 and Algorithm 3 are:

• In Algorithm 2, the number of vertices in 𝑃 is initialised as |𝑉 (𝑃) | = 1, while in Algorithm 3, it

is initialised as |𝑉 (𝑃) | = 2.

• When |𝑉 (𝑃) | = 1 and all edges incident to the only vertex 𝑢 in 𝑃 are marked as visited:

– In Algorithm 2, the algorithm terminates and returns 0;

– In Algorithm 3, the algorithm terminates if and only if 𝑢 ∉ 𝑆, and would reinitialise the

algorithm otherwise.

The correctness of Algorithm 3 is due to a coupling argument similar to Lemma 3.1. We couple

Algorithm 1 and Algorithm 3 by using the same resampling table. By the same argument as in Lemma 3.1,

given the same resampling table, the orientation of 𝑒 is the same in the outputs of both Algorithm 1

and Algorithm 3. Thus, 𝜎𝑒 follows the desired marginal distribution by Lemma 2.1. As for efficiency,

we notice that the same martingale argument as in Lemma 3.2 applies to the length of 𝑃 as well. Early

truncation of the edge sampler only incurs a small error. However, we need some extra care for the

self-reduction in the overall sampling algorithm.

Proof of Theorem 1.2. We sequentially sample the orientation of edges in 𝐺 (approximately) from its

conditional marginal distribution. Suppose we choose an edge 𝑒 = {𝑢, 𝑣}, and the sampled orientation

is (𝑢, 𝑣). Then, we can remove 𝑒 from the graph, and let 𝑆 ← 𝑆 \ {𝑢}. The conditional distribution is

effectively the same as 𝜇𝑆 in the remaining graph.

One subtlety here is that doing so may create vertices of degree ≤ 2. To cope with this, we keep

sampling edges adjacent to one vertex in 𝑆 as much as possible before moving on to the next. Suppose

the current focus is on 𝑣. We use SampleEdge to sample the orientation of edges adjacent to 𝑣 one at

a time until either 𝑣 is removed from 𝑆 or the degree of 𝑣 becomes 1. In the latter case, the leftover

edge must be oriented away from 𝑣, which also results in removing 𝑣 from 𝑆. Note that, when either

condition holds, the last edge sampled is oriented as (𝑣, 𝑢) for some neighbour 𝑢 of 𝑣. We then move

our focus to 𝑢 if 𝑢 ∈ 𝑆, and move to an arbitrary vertex in 𝑆 otherwise. The key property of choosing

edges this way is that, whenever SampleEdge(𝐺, 𝑆, 𝑒) is invoked, there can only be at most one vertex

of degree 2 in 𝑆, and if it exists, it must be an endpoint of 𝑒. If all vertices are removed from 𝑆, we finish

by simply outputing a uniformly at random orientation of the remaining edges.

To maintain efficiency, we truncate SampleEdge(𝐺, 𝑆, 𝑒) in each step of the sampling process. More

specifically, for some constant 𝐶, we output the first edge of 𝑃 once the number of executions of

9



Algorithm 3: SampleEdge(𝐺, 𝑆, 𝑒)
Input :an undirected graph 𝐺 = (𝑉, 𝐸), a subset of vertices 𝑆 ⊆ 𝑉 , and an edge

𝑒 = {𝑥, 𝑦} ∈ 𝐸 ;

Output :a random orientation 𝜎𝑒 ∈ {(𝑥, 𝑦), (𝑦, 𝑥)} of 𝑒;

1 Initialise a mapping 𝑀 : 𝐸 → {visited, unvisited} so that ∀𝑒 ∈ 𝐸 , 𝑀 (𝑒) = unvisited;

2 Let 𝑃 be a (directed) path initialised as 𝑃 = (𝑥, 𝑦) or 𝑃 = (𝑦, 𝑥) with equal probability, and mark

𝑒 visited;

3 while True do
4 Let 𝑢 be the last vertex of 𝑃;

5 if |𝑉 (𝑃) | ≥ 2 and 𝑢 ∉ 𝑆 then return the first edge in 𝑃;

6 if all edges incident to 𝑢 are marked visited then
7 mark all edges incident to 𝑢 as unvisited;

8 if |𝑉 (𝑃) | = 1 then
9 rerandomise 𝑃 as 𝑃 = (𝑥, 𝑦) or 𝑃 = (𝑦, 𝑥) with equal probability;

10 else
11 remove 𝑢 from 𝑃;

12 else
13 let 𝑒 = {𝑢, 𝑤} be the first unvisited edge incident to 𝑢;

14 mark 𝑒 as visited;

15 with probability 1/2 do
16 if 𝑤 ∈ 𝑉 (𝑃), or there is a visited edge (𝑤, 𝑤′) for some 𝑤′ ∈ 𝑉 (𝑃) then
17 return the first edge in 𝑃;

18 append 𝑤 to the end of 𝑃;

Line 15 in Algorithm 3 exceeds 𝐶 ln(𝑚/𝜀). We claim that there is a constant 𝐶 such that the truncation

only incurs an 𝜀/𝑚 error in total variation distance between the output and the marginal distribution.

This is because the same martingale argument as in Lemma 3.2 still applies. Note that if 𝑃 visits any

vertex not in 𝑆, the algorithm immediately terminates. Thus degrees of vertices not in 𝑆 do not affect

the argument. Moreover, the only degree 2 vertex in 𝑆, say 𝑥, is adjacent to the first edge 𝑒 = {𝑥, 𝑦}
of 𝑃. If 𝑒 is initialised as {𝑥, 𝑦}, then when 𝑃 returns to 𝑥, the algorithm immediately terminates.

Otherwise 𝑒 is initialised as {𝑦, 𝑥}, in which case there is no drift in the first step of 𝑃. Thus, as long

as we adjust the constant to compensate the potential lack of drift in the first step, the martingale

argument in Lemma 3.2 still works and the claim holds. As the truncation error is 𝜀/𝑚, we may couple

the untruncated algorithm with the truncated version, and a union bound implies that the overall error

is at most 𝜀.

As we process each edge in at most𝑂 (log(𝑚/𝜀)) time, the overall running time is then𝑂 (𝑚 log(𝑚/𝜀)).
This finishes the proof of the fast sampling algorithm. □

4.1. Proof of the marginal lower bound. Now we prove the lower bound of marginal ratios for

SFOs, namely, Lemma 4.1. Let us first recall the variable framework of the local lemma. Consider the

probability space P of a uniformly random orientation of 𝐺 (namely orienting each edge independently

and uniformly at random), and each 𝑢 ∈ 𝑆 corresponding to a bad event E𝑢 of 𝑢 being a sink. We then

have

𝑝𝑢 ≔ Pr
P
[E𝑢] = 2−𝑑 (𝑢) , ∀𝑢 ∈ 𝑉,

where 𝑑 (𝑢) denotes the degree of 𝑢. We also need some definitions, essentially from [HV17] and small

variations from those in [She85].

Definition 4.2. We define the following notations.
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• Let Ind(𝐺) denote all independent sets of 𝐺 , i.e.,

Ind(𝐺) ≔ {𝐼 ⊆ 𝑉 | 𝐼 contains no edge of 𝐺}.
• For 𝐽 ⊆ 𝑉 , let

𝑞𝐽 ≔
∑︁

𝐼∈Ind(𝐺)
𝐼⊆𝐽

(−1) |𝐼 |
∏
𝑢∈𝐼

𝑝𝑢,(6)

and

𝑃𝐽 ≔ Pr
P

[∧
𝑢∈𝐽
¬E𝑢

]
,

which is the probability under P that all vertices in 𝐽 are sink-free.

We then proceed to the proof.

Proof of Lemma 4.1. For 𝑢 ∈ 𝑉 , let Γ(𝑢) denote the set of neighbours of 𝑢 in 𝐺. We claim that for any

𝐽 ⊆ 𝑉 and 𝑢 ∈ 𝐽:

(1) 𝑃𝐽 = 𝑞𝐽 > 0;

(2)
𝑞𝐽

𝑞𝐽\{𝑢}
>

{
1
2 Γ(𝑢) ⊆ 𝐽;
2
3 otherwise.

Lemma 4.1 immediately follows from the claim as 𝑃𝑆 =
|Ω𝑆 |
2|𝐸 | > 0 and

𝜇𝑆 (𝑣 is not a sink) = Pr
P

[
¬E𝑣 |

∧
𝑢∈𝑆
¬E𝑢

]
=

𝑃𝑆∪{𝑣}
𝑃𝑆

=
𝑞𝑆∪{𝑣}
𝑞𝑆

>
1
2 ,

where the last equality is by Item 1 and the inequality is by Item 2.

We then prove claim by induction on the size of 𝐽. The base case is when 𝐽 = ∅, and all items directly

hold as 𝑃∅ = 𝑞∅ = 1. For the induction step, we first prove Item 1. For 𝐽 ⊆ 𝑉 and 𝑢 ∈ 𝐽, denote

Γ+(𝑢) = Γ(𝑢) ∪ {𝑢}. We have

Pr
P

E𝑢 ∧ ©«
∧

𝑗∈𝐽\{𝑢}
¬E 𝑗

ª®¬
 = Pr

P
[E𝑢] Pr

P

©«
∧

𝑗∈𝐽\{𝑢}
¬E 𝑗

ª®¬ | E𝑢
 = 𝑝𝑢 Pr

P

©«
∧

𝑗∈𝐽\Γ+ (𝑢)
¬E 𝑗

ª®¬ | E𝑢


= 𝑝𝑢 Pr
P

©«
∧

𝑗∈𝐽\Γ+ (𝑢)
¬E 𝑗

ª®¬
 = 𝑝𝑢 · 𝑃𝐽\Γ+ (𝑢) ,

where in the second equality we used the fact that 𝑆-SFO instances are extremal. Thus,

𝑃𝐽 = 𝑃𝐽\{𝑢} − Pr
P

E𝑢 ∧ ©«
∧

𝑗∈𝐽\{𝑢}
¬E 𝑗

ª®¬
 = 𝑃𝐽\{𝑢} − 𝑝𝑢 · 𝑃𝐽\Γ+ (𝑢) .(7)

Also, by separating independent sets according to whether they contain 𝑢 or not, we have

𝑞𝐽 =
∑︁

𝐼∈Ind(𝐺)
𝐼⊆𝐽

(−1) |𝐼 |
∏
𝑖∈𝐼

𝑝𝑖

=
∑︁

𝐼∈Ind(𝐺)
𝐼⊆𝐽\{𝑢}

(−1) |𝐼 |
∏
𝑖∈𝐼

𝑝𝑖 − 𝑝𝑢 ·
∑︁

𝐼∈Ind(𝐺)
𝐼⊆𝐽\Γ+ (𝑢)

(−1) |𝐼 |
∏
𝑖∈𝐼

𝑝𝑖

=𝑞𝐽\{𝑢} − 𝑝𝑢 · 𝑞𝐽\Γ+ (𝑢) .(8)

Combining (7), (8), and the induction hypothesis, we have that 𝑃𝐽 = 𝑞𝐽 . For the positivity, let 𝐽 ∩Γ+(𝑢)
be listed as {𝑢, 𝑢1, . . . , 𝑢𝑘} for some 𝑘 ≤ 𝑑 (𝑢). For 0 ≤ 𝑖 ≤ 𝑘 , let 𝑈𝑖 = {𝑢, 𝑢1, . . . , 𝑢𝑖}. Then we have

𝑞𝐽\{𝑢}
𝑞𝐽\Γ+ (𝑢)

=

𝑘∏
𝑖=1

𝑞𝐽\𝑈𝑖−1

𝑞 (𝐽\𝑈𝑖−1 )\{𝑢𝑖 }
> 2−𝑘 ≥ 2−𝑑 (𝑢) = 𝑝𝑢,
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where the first inequality is by Item 2 of the induction hypothesis. Thus, 𝑞𝐽 > 0 by (8) and Item 1 holds.

It remains to show Item 2. Recall that 𝐽 ∩ Γ+(𝑢) is listed as {𝑢, 𝑢1, . . . , 𝑢𝑘}. For any 0 ≤ 𝑖 ≤ 𝑘 ,

Γ+(𝑢𝑖) ⊈ 𝐽 \𝑈𝑖 because 𝑢 ∈ Γ+(𝑢𝑖) and 𝑢 ∉ (𝐽 \𝑈𝑖). Then by the induction hypothesis on the second

case of Item 2,

𝑞 (𝐽\𝑈𝑖 )\{𝑢𝑖 }
𝑞𝐽\𝑈𝑖

<
3
2 .(9)

By (8), we have

(10)

𝑞𝐽

𝑞𝐽\{𝑢}
= 1 − 𝑝𝑢 ·

𝑞𝐽\Γ+ (𝑢)
𝑞𝐽\{𝑢}

= 1 − 2−𝑑 (𝑢) ·
𝑘−1∏
𝑖=0

𝑞 (𝐽\𝑈𝑖 )\{𝑢𝑖 }
𝑞𝐽\𝑈𝑖

(9)

> 1 − 2−𝑑 (𝑢) ·
(
3
2

) 𝑘
.

If Γ(𝑢) ⊆ 𝐽, 𝑘 ≤ 𝑑 (𝑢) and as 𝑑 (𝑢) ≥ 3,

1 − 2−𝑑 (𝑢) ·
(
3
2

) 𝑘
≥ 1 −

(
3
4

)𝑑 (𝑢)
≥ 37

64 >
1
2 .

If Γ(𝑢) ⊈ 𝐽, 𝑘 ≤ 𝑑 (𝑢) − 1 and, again, as 𝑑 (𝑢) ≥ 3,

1 − 2−𝑑 (𝑢) ·
(
3
2

) 𝑘
≥ 1 − 2

3 ·
(
3
4

)𝑑 (𝑢)
≥ 23

32 >
2
3 .

Together with (10), this finishes the proof of Item 2 and the lemma. □

In the proof above, Item 1 holds mainly because the instance is extremal. For general non-extremal

cases, we would have
𝑃𝐽

𝑃𝐽\{𝑢}
≥ 𝑞𝐽

𝑞𝐽\{𝑢}
for 𝐽 ⊆ 𝑉 and 𝑢 ∈ 𝐽 instead.

4.2. Independence polynomial at negative weights. An interesting consequence of Item 1 in the

proof of Lemma 4.1 is that the number of SFOs can be computed using the independence polynomial

evaluated at negative activities. More specifically, similar to (6), let

𝑞𝐺 (x) =
∑︁

𝐼∈Ind(𝐺)

∏
𝑢∈𝐼

𝑥𝑢,

where x is a vector of weights for each vertex. Then, 𝑞𝐺 (−p) = 𝑞𝑉 where 𝑞𝑉 is defined in (6), and

thus |Ω𝑉 | = 2 |𝐸 |𝑞𝐺 (−p), where p is the vector (𝑝𝑢)𝑢∈𝑉 of failure probabilities at the vertices. Namely

𝑝𝑢 = 2−𝑑 (𝑢) where 𝑑 (𝑢) is the degree of 𝑢.

There are more than one FPTASes [PR17, HSV18] that can efficiently approximate the independence

polynomial at negative weights. These algorithms work in the so-called Shearer’s region [She85]. To

explain Shearer’s region, let us abuse the notation slightly and extend the definition in (6) to a function

𝑞𝐽 (x) =
∑

𝐼∈Ind(𝐺) ,𝐼⊆𝐽

∏
𝑢∈𝐼

𝑥𝑢 to take an input weight vector x. Then, a vector p is in Shearer’s region

if and only if 𝑞𝑆 (−p) > 0 for all 𝑆 ⊆ 𝑉 . Lemma 4.1 implies that the probability vector for SFOs is in

Shearer’s region. Moreover, we say a vector p has slack 𝛼 if (1 + 𝛼)p is in Shearer’s region. For a vector

x with slack 𝛼, the algorithm by Patel and Regts [PR17] 𝜀-approximates 𝑞𝐺 (x) in time (𝑛/𝜀)𝑂 (log 𝑑/𝛼)
,

and the algorithm by Harvey, Srivastava, and Vondrák [HSV18] runs in time (𝑛/(𝛼𝜀))𝑂 (log 𝑑/
√
𝛼)

, where

𝑑 is the maximum degree of the graph. They do not recover Theorem 1.1 as the slack is a constant when

constant degree vertices exist. If, in the meantime, some other vertices have unbounded degrees, these

algorithms run in quasi-polynomial time instead.

To see the last point, we construct a graph that contains vertices of unbounded degrees but with

constant slack for SFOs. Consider the wheel graph 𝐺, which consists of a cycle 𝐶𝑛 of length 𝑛, and a

central vertex 𝑣 that connects to all vertices of 𝐶𝑛. Thus, 𝑝𝑣 = 2−𝑛 and 𝑝𝑢 = 1/8 for any 𝑢 in 𝐶𝑛. For

the cycle, as there are two SFOs, we see that 𝑞𝐶𝑛
(−1/4) = 2−𝑛+1 (where we use Item 1 in the proof of

Lemma 4.1). Thus, by (8),

𝑞𝐺 (−2p) = 𝑞𝐶𝑛
(−1/4) − 2𝑝𝑣 = 2−𝑛+1 − 2 · 2−𝑛 = 0.

Therefore, the slack here is at most 1, despite the existence of a high degree vertex.

In summary, the existing FPTASes on the independence polynomial with negative weights do not

handle the mixture of high and low degree vertices well enough for the case of SFOs. However, it might

12



provide an alternative approach to derive FPTASes to count solutions to extremal instances of the local

lemma, which is worthy of further study.

5. Concluding remarks

Originally, Bubley and Dyer [BD97a] introduced sink-free orientations as a special case of read-twice

Sat. Here, “read-twice” means that each variable in a CNF formula appears exactly twice, and it

corresponds to an edge of the graph. Vertices of the graph correspond to clauses of the formula. The

assignment of the edge is an orientation. This represents that the variable appears with opposite signs

in the formula. In fact, Bubley and Dyer showed an FPRAS for all read-twice #Sat. It is natural to ask if

they admit FPTAS as well. This question was first raised by Lin, Liu, and Lu [LLL14], who also gave an

FPTAS for monotone read-twice #Sat (which is equivalent to counting edge-covers in graphs). The

monotone requirement means that the two appearances of any variable have the same sign. From this

perspective, our FPTAS is complementary to that of [LLL14]. However, as our techniques are drastically

different from [LLL14], to give an FPTAS for all read-twice #Sat, one may need to find a way to combine

these two techniques to handle mixed appearances of variables.

Another immediate question is to generalise our local sampler under the partial rejection sampling

framework. The first step would be to be able to handle degree 2 vertices for SFOs, which breaks

our current submartingale argument. To go a bit further, a local sampler for all extremal instances

would yield an FPTAS for all-terminal reliability, whose existence is a major open problem. Also, for

all-terminal reliability, one may also attempt to localise the near-linear time sampler in [CGZZ24].

Lastly, in addition to the discussion of Section 4.2, let us discuss another polynomial associated with

SFOs and its zero-freeness. Fix a SFO 𝜎. Let 𝑝(𝑥) = ∑𝑚
𝑖=0 𝐶𝑖𝑥

𝑖
, where 𝑚 is the number of edges, and

𝐶𝑖 indicates how many SFOs exist that agree with 𝜎 in exactly 𝑖 edges. It is easy to evaluate 𝑝(0) = 1,

and 𝑝(1) is the total number of SFOs. However, for a cycle, this polynomial becomes 1 + 𝑥𝑚, which

can have a zero arbitrarily close to 1. This zero defeats, at least, the standard application of Barvinok’s

method [Bar16, PR17]. Although one could exclude cycles by requiring the minimum degree to be

at least 3 (like we did in this paper), current techniques of proving zero-freeness seem to hinge on

handling all subgraphs. For example, to use Ruelle’s contraction like in [GLLZ21], one has to start

from small fragments of the graph and gradually rebuild it. The obstacle then is to avoid starting from

or encountering cycles in the rebuilding process. Other methods, such as the recursion-based one in

[LSS19], require hereditary properties (similar to the so-called strong spatial mixing) that break in

cycles as well. It would be interesting to see if any of our arguments can help in proving zero-freeness

of the polynomial above.
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[EL75] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some

related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
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