
Can You Link Up With Treewidth?

Radu Curticapean
University of Regensburg and IT University of Copenhagen

Simon Döring
Max Planck Institute for Informatics and Saarland University

Daniel Neuen
University of Regensburg and Max Planck Institute for Informatics

Jiaheng Wang
University of Regensburg

Abstract

A central result of Marx [ToC ’10] proves that there are k-vertex graphs H of maximum
degree 3 such that no(k/ log k) time algorithms for detecting colorful H-subgraphs would refute
the Exponential-Time Hypothesis (ETH). This result is widely used to obtain almost-tight
conditional lower bounds for parameterized problems under ETH.

Our first contribution is a new and fully self-contained proof of this result that further
simplifies a recent work by Karthik et al. [SOSA 2024]. Towards this end, we introduce
a novel graph parameter, the linkage capacity γ(H), and show with an elementary proof
that detecting colorful H-subgraphs in time no(γ(H)) refutes ETH. Then, we use a simple
construction of communication networks credited to Beneš to obtain k-vertex graphs of
maximum degree 3 and linkage capacity Ω(k/ log k), avoiding the use of expander graphs. We
also show that every graph H of treewidth t has linkage capacity Ω(t/ log t), thus recovering
the stronger result of Marx [ToC ’10] with a simplified proof.

Additionally, we obtain new tight lower bounds for certain types of patterns by analyzing
their linkage capacity. For example, we prove that almost all k-vertex graphs of polynomial
average degree Ω(kβ) for some β > 0 have linkage capacity Θ(k), which implies tight lower
bounds for such patterns H. As an application of these results, we also obtain tight lower
bounds for counting small induced subgraphs having a certain property Φ, improving bounds
from [Roth et al., FOCS 2020].

The research is funded by the European Union (ERC, CountHom,
101077083). Views and opinions expressed are those of the author(s)
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.

The title was found with the help of a popular LLM. We thank
Cornelius Brand for pointing out a connection to extension complexity.

1

https://orcid.org/0000-0001-7201-9905
https://orcid.org/0009-0002-6667-5257
https://orcid.org/0000-0002-4940-0318
https://orcid.org/0000-0002-5191-545X

1 Introduction

Over the past two decades, it has been discovered that complexity assumptions about exponential-
time problems imply far-reaching lower bounds for polynomial-time [13, 67, 68] and parameterized
[26, 56] problems. Among the first such results, it was shown that the Exponential-Time
Hypothesis (ETH) about the Boolean satisfiability problem implies an nΩ(k)-time lower bound
for the seemingly unrelated parameterized problem Clique of detecting k-cliques in n-vertex
graphs [16, 17]. This lower bound solidifies the status of Clique as a canonical hard problem in
parameterized complexity.

Ideally, a reduction from Clique to some target problem would also transfer the nΩ(k)-time
lower bound under ETH from Clique to the target problem. However, reductions from Clique
often require k gadgets that encode the vertices of a k-clique, as well as Θ(k2) additional gadgets
to verify the edges between all pairs of encoded vertices. As each gadget typically increases the
parameter by O(1), an instance for Clique is then transformed into an instance of the target
problem with a parameter value of Θ(k2) (see, e.g., [26, Section 13.6.3]). This in turn means that
only no(

√
ℓ)-time algorithms can be ruled out under ETH for a target problem with parameter ℓ.

Tighter lower bounds could be obtained if we could reduce from a similar subgraph problem,
but for k-vertex patterns H with only O(k) rather than Θ(k2) edges. More specifically, for a
fixed graph H, let ColSub(H) be the problem of detecting H-subgraph copies in graphs G
with vertex-colors from V (H) such that every v ∈ V (H) is mapped into color v in G. (This
problem can equivalently be interpreted as a constraint satisfaction problem with variables xv
for v ∈ V (H) and arity-2 relations Re for e ∈ E(H). The domain of xv is the set of v-colored
vertices in G.) Known parameterized hardness results based on the problem Clique can often
be modified to use ColSub(H) as the reduction source. This is useful, because a seminal result
by Marx [59, Corollary 6.1] (very recently shown with a simpler proof [50, Theorem 1.3]) shows
that ColSub(H) is indeed hard under ETH for graphs H of maximum degree 3, albeit not with
an entirely tight lower bound:

Theorem 1.1 ([50, 59]). Assuming ETH, there exists a fixed constant α > 0 and an infinite
sequence of graphs H1, H2, . . . such that, for all k ∈ N, the graph Hk has k vertices and maximum
degree 3, and ColSub(H) does not admit an O(nα·k/ log k)-time algorithm.

This theorem has become a standard tool to prove almost-tight lower bounds along the lines
of the above reduction scheme, and it has been applied to numerous parameterized problems
from a diverse range of areas [1, 5, 8, 9, 10, 11, 12, 14, 18, 19, 20, 21, 22, 23, 25, 27, 34, 35, 36,
39, 42, 45, 49, 52, 57, 60, 62, 64].

1.1 Main Concept: Linkage Capacity

In this paper, we provide a new perspective on the seminal Theorem 1.1, which allows us to
simplify its proof significantly (even its more recent version [50]) and derive several new results.
Our interpretation hinges upon a new graph parameter, the linkage capacity γ(H) of a graph
H. Roughly speaking, this parameter measures how well vertices of H can be connected by
vertex-disjoint paths on specified endpoint pairs.

Known Lower Bound for the Clique Problem To explain our ideas, let us first sketch the
classical nΩ(k)-time lower bound for Clique under ETH (see, e.g., [26, Theorem 14.21]) and then
describe our modifications. The original proof is as follows: It is known that, assuming ETH,
the 3-Coloring problem cannot be solved in 2o(n) time for n-vertex graphs G with maximum
degree 4. If G can be transformed into an equivalent instance X of Clique with approximately
3n/k vertices, then an no(k)-time algorithm for Clique would imply a 2o(n)-time algorithm for
the 3-Coloring problem, contradicting ETH.

2

To transform G into X, the vertex set V (G) is divided equitably into blocks V1, . . . , Vk. The
vertices of X correspond to the 3-colorings of these blocks, and two vertices in X are connected by
an edge if their colorings are compatible, meaning they come from different blocks and together
form a proper coloring. This way, the k-cliques K in this “compatiblity graph” X correspond
bijectively to valid 3-colorings of G: Indeed, the vertices of K provide a valid coloring for each
block, and the presence of edges between all u, v ∈ V (K) in X ensures that the union of these
partial colorings is a valid coloring of the entire graph G.

From Cliques to General Subgraphs To show hardness of ColSub(H) with general k-vertex
patterns H, we adapt the lower bound for Clique. First, consider the favorable scenario that
the vertices of an input graph G for 3-Coloring can be split equitably into blocks V1, . . . , Vk,
corresponding to the k vertices of H, such that the edges of G “respect” H: Every edge of G is
contained within one block or between blocks Vi and Vj with ij ∈ E(H). In this scenario, not all
pairs of partial 3-colorings need to be checked for compatibility. Indeed, it suffices to check this
between blocks Vi and Vj with ij ∈ E(H), since no other edges could lead to an incompatibility.

In general however, we cannot assume that an n-vertex graph G of maximum degree 4 can
be split equitably such that its edges respect H. To address this, we “re-route” the edges in G
along paths on new vertices (that are placed in the old blocks) and edges that do respect H.
While this eventually yields a graph G′ in which all edges indeed respect H, it may be possible
that most edges are routed on paths of length Ω(k), thus increasing the block size from n/k back
to n. Even if routing via short paths is possible, it may be possible that a few blocks are hit
disproportionally often, leading to the same problem. Both issues would render a fast algorithm
for ColSub(H) useless for the purpose of obtaining a (too) fast algorithm for 3-Coloring.

Linkage Capacity The crucial observation is that many patterns H enable a simultaneous
“batch-rerouting” of batches with Ω(k) edges in G; adding all paths for any such a batch to
G increases each block size only by 1. Moreover, as also observed in [50, Theorem 4.2], it is
sufficient to consider batches that are matchings, since G has maximum degree 4 and thus admits
a 5-edge-coloring, i.e., a partition of its edges into 5 matchings.

The linkage capacity γ(H) allows us to precisely quantify how well H supports batch-rerouting
of matchings by vertex-disjoint paths. To define it, first let the blowup H ⃝⊗ Jt for t ∈ N be H
with every vertex copied to t clones that form a clique; this is essentially the maximal graph
with block size t whose edges respect H. See also Figure 1. Second, call a set X in a graph H ′

matching-linked if, for every matching M with vertex-set X, there exist disjoint u-v-paths in H ′

realizing the edges uv ∈M . Then the linkage capacity γ(H) of a graph H is the largest c > 0
such that H ⃝⊗ Jt contains a matching-linked set X of size ⌊ct⌋; this is finite, and we even have
γ(H) ≤ k, as |X| ≤ |V (H ⃝⊗ Jt)| = kt.

Following the reduction sketch from 3-Coloring given above, and using large matching-
linked sets in blowups H ⃝⊗ Jt to accommodate the vertices of a 3-Coloring instance G, we
establish a conditional lower bound on the complexity of ColSub(H) based on γ(H).

Theorem 1.2. Assuming ETH, there exist fixed constants α, γ0 > 0 such that no fixed graph H
with γ(H) ≥ γ0 admits an O(nα·γ(H))-time algorithm for ColSub(H).

It remains to determine when H has large linkage capacity. For example, if H itself admits a
large matching-linked set, then this translates to its blowups, thus establishing high γ(H). This
is however only a sufficient criterion, even though most of our lower bounds are based on it. As
we investigate in Section 6, the linkage capacity is related to certain fractional multicommodity
flow problems whose relevance in the context of lower bounds for ColSub(H) under ETH was
already identified before [50, 59]. Linkage capacity however is a much more elementary and more
applicable concept. In particular, the restriction to matchings allows us to connect it to known

3

results on routing with specified terminal pairs in order to obtain lower bounds on γ(H). This in
turn allows us to prove new results under ETH without much technical effort.

1.2 Applications of Linkage Capacity

With Theorem 1.2 in hand, we show lower bounds on the complexity of the colorful H-subgraph
problem via the linkage capacity γ(H). For this, we enlist the help of communication network
theory [54, 6], random graph theory [15], linear programming [37, 55], and classical results on
connectivity via vertex-disjoint paths from graph theory [58, 66].

A Fully Self-Contained Proof of Theorem 1.1 Our first application of Theorem 1.2 is a
significantly simplified and self-contained1 proof of the seminal Theorem 1.1. The original proof
of this theorem by Marx [59] uses highly nontrivial arguments regarding multicommodity flows as
a black box [37]. Even a very recent simplification [50] still requires the construction of expander
graphs and routing algorithms for such graphs, both of which are highly nontrivial [2, 55].

By approaching the problem through linkage capacity, we observe that expansion is not
required to obtain Theorem 1.1. Instead, we can rely on a very simple construction of telecommu-
nication networks, credited to a 1964 paper by Beneš [6], then employed at Bell Labs: A Beneš
network contains s = 2ℓ input and output vertices, and k = O(s log s) vertices in total. For every
pairing of inputs to outputs, the network guarantees private data streams (i.e., vertex-disjoint
paths) connecting each input to its specified output. Both the network construction and routing
therein are elementary divide-and-conquer arguments that feature in undergraduate introduction
courses to discrete mathematics [54]. A minuscule augmentation of this construction gives
us k-vertex graphs of maximum degree 4 and linkage capacity Ω(k/ log k). Combined with
Theorem 1.2, this gives a novel proof of Theorem 1.1.

We recently found that graphs with large matching-linked sets have been used in communi-
cation and extension complexity: A paper by Göös, Jain, and Watson [41, Section 3.3] briefly
mentions “bounded-degree butterfly graphs” from an unpublished manuscript on pebble games
by Nordström [61, Proposition 5.2] as an alternative to expanders; this alternative construction
turns out to be precisely that of Beneš.

Tight Lower Bounds for Dense Graphs Alon and Marx [4, Theorem 1.4] argue that the
logarithmic slack in Theorem 1.1 cannot be overcome by current approaches—including ours.
This holds even for patterns H of constant average rather than maximum degree. More modestly,
one can ask for “just slightly” dense k-vertex patterns H such that ColSub(H) requires nΩ(k)

time under ETH.
Indeed, Alon and Marx [4, Theorem 1.5(2)] showed that, for every δ > 0, certain specifically

constructed patterns S with average degree O(kδ) enjoy strong embeddability properties that
entail nΩ(k)-time lower bounds on the colorful S-subgraph problem [4, Theorem 1.8]. For some
problems of interest however, e.g., for counting induced k-vertex patterns [24, 32, 64], one can
only reduce from the colorful H-subgraph problem for some (say, adversarially chosen) dense
pattern H, which may not necessarily be a graph S constructed by Alon and Marx. This imposes
a bottleneck towards tight lower bounds for such problems.

One partial remedy lies in using large clique minors (see, e.g., [64]). Kostochka [53] showed
that every graph H of average degree d contains a Kq-minor with q = Ω(d/

√
log d). Given a

Kq-minor in H, a straightforward reduction yields an nΩ(q)-time lower bound on the colorful
H-subgraph problem under ETH. This implies that every pattern H of linear average degree Ω(k)

1We give a self-contained proof starting from the known result that, under ETH, the 3-Coloring problem
requires 2Ω(n) time on 4-regular graphs with n vertices. This can be shown easily from ETH together with the
sparsification lemma.

4

requires an exponent of Ω(k/
√
log k) for the colorful H-subgraph problem. While this improves

upon the lower bound from Theorem 1.1, a slack of Ω(
√
log k) remains.

Using linkage capacity, we eliminate this slack and obtain a tight lower bound for dense
patterns: Combining two textbook results [30], we show that every pattern H of average degree
d has linkage capacity Ω(d).2 Theorem 1.2 then immediately yields:

Theorem 1.3. There is a constant α > 0 such that, for every graph H with average degree d,
the existence of an O(nα·d) time algorithm for ColSub(H) would refute ETH.

This theorem covers the “worst case”, i.e., patterns H of fixed average degree d that are
adversarially chosen so as to minimize γ(H). In particular, for linear average degree, an nΩ(k)

bound under ETH follows. This implies new tight lower bounds for very general classes of induced
pattern counting problems [24, 64] (see Section 7 for details).

In the “average case”, much lower density turns out to be sufficient for an nΩ(k) bound. Indeed,
known results on routing in random graphs [15] imply directly that almost all k-vertex graphs H
with average degree d ∈ Ω(kβ) for constant β > 0 have linkage capacity Θ(k). Observe that the
average degree is that of the specifically constructed patterns S by Alon and Marx [4]; we show
that not only specific patterns, but almost all patterns of polynomial average degree have an
nΩ(k) bound for ColSub(H).

More generally, we show that the linkage capacity of the Erdős-Rényi random graph G(k, p)
for non-degenerate probabilities p is Ω(k/ρ), where ρ = log(k)/ log(kp) is the typical distance
between vertices in G(k, p) [7, 51]. We obtain the following general lower bound:

Theorem 1.4. There is a constant α > 0 such that for every constant ε > 0 and every
p ≥ (1 + ϵ) log k/k, the following holds: With high probability, an Erdős-Rényi random graph
H ∼ G(k, p) is such that an O(nα·k/ρ) time algorithm for ColSub(H) would refute ETH. Here,
we write ρ = log(k)/ log(kp) for the typical distance in G(k, p).

Note that ρ is the logarithm of k in the base of the average degree kp; this captures the
time needed to concurrently explore all k vertices in a process that branches into kp random
vertices from each vertex. It is intuitively clear that the linkage capacity should be at most
O(k/ρ): Almost all vertex pairs u, v in a random graph require u-v-paths of length ρ, so we
cannot connect more than k/ρ vertex pairs without exhausting k vertices. The bound from [15]
shows that, with high probability, Ω(k/ρ) vertex pairs can be connected.

Linkage Capacity and Treewidth Besides studying the interplay between the linkage
capacity γ(H) and |V (H)|, we also consider its connection to the treewidth tw(H) of a graph H.
For example, it is easily shown that the ℓ-by-ℓ grid ⊞ℓ has treewidth ℓ and linkage capacity Ω(ℓ),
see Lemma 3.9 and Figure 1. Thus, we have the linear relationship γ(⊞) ∈ Ω(tw(⊞)) for every
grid ⊞. Standard bidimensionality arguments [29] imply such a linear relationship for every class
of graphs H excluding a fixed minor, thus yielding tight lower bounds under ETH parameterized
by the treewidth tw(H) rather than |V (H)|. However, we stress that, since patterns H ∈ H
excluding a fixed minor satisfy |V (H)| ∈ Ω(tw(H)2), such patterns are not amenable for results
similar to Theorem 1.1.

In Section 6, we drop the assumption of excluding a fixed minor and establish the bound
of γ(H) = Ω(t/ log t) for general graphs H of treewidth t. This recovers a general lower bound
by Marx [59] with a more transparent proof—albeit the same approximate min-cut/max-flow
theorem for multicommodity flows [37, 55] still appears as black box.

2This lower bound is asymptotically tight, as worst-case examples like Kd,s−d have linkage capacity at most d.
Indeed, a linkage with d+ 1 paths in Kd,s−d would in particular imply a matching with d+ 1 edges, which clearly
does not exist in Kd,s−d.

5

2 Preliminaries

We write N = {1, 2, 3, . . . } for the natural numbers. For n ∈ N, we write [n] := {1, 2, . . . , n}. All
logarithms are natural unless specified otherwise.

2.1 Basic Definitions

We use standard graph notation [30]. Graphs are finite and undirected, and we write uv for edges
between u and v. A path from u to v is a sequence P = (u = w0, w1, . . . , wℓ = v) of distinct
vertices such that consecutive vertices are adjacent. Slightly abusing notation, we also interpret
P as a path from v to u. For a graph G and X ⊆ V (G), we write G[X] for the subgraph induced
by X and G−X := G[V (G) \X] for the result of deleting X from G.

A colored graph is a triple G = (V,E, c) where c : V (G) → C is a not necessarily proper
(vertex-)coloring of the vertices. We say G is canonically colored if c is the identity mapping and
we write Gcan for the canonically colored version of G.

Given a “pattern” graph H and “host” graph G, we write #Sub(H → G) for the number of
subgraphs of G that are isomorphic to H. If H and G are colored, only subgraphs preserving the
coloring are counted. For a fixed graph H, the problem #ColSub(H) takes as input a colored
graph G = (V,E, c) with c : V (G) → V (H), and asks to compute #Sub(Hcan → G), while its
decision version ColSub(H) asks whether #Sub(Hcan → G) ≥ 1.

To analyze the complexity of ColSub(H), we rely on several tools.

Definition 2.1 (Blowup). Given a graph H and an integer t ≥ 1, the blowup graph H ⃝⊗ Jt
contains the vertices v(i) for all v ∈ V (H) and i ∈ [t], and edges

{u(i)v(j) | uv ∈ E(H), i, j ∈ [t]} ∪ {u(i)u(j) | u ∈ V (H), i ̸= j ∈ [t]}.

Remark 2.2. Marx [59] uses the notation H(t) instead of H ⃝⊗ Jt. We choose H ⃝⊗ Jt since there
is no exponential increase in size, but we are rather taking a tensor product of H and the (t× t)
all-ones matrix (usually denoted by Jt) and then turn cloned vertices into cliques.

A multigraph M is a graph that allows parallel edges with the same endpoints, but no
self-loops. The degree degM (v) of a vertex v ∈ V (M) is the number of edges incident to v, taking
multiplicities into account. The average degree of M is d(M) := 2|E(M)|/|V (M)|.

A matching in M is set M ′ ⊆ E(M) of pairwise vertex-disjoint edges. Slightly abusing
notation, we regularly interpret M ′ again as a graph with edge set M ′ and vertices for all
endpoints in M ′. Given a vertex set X, a matching on X is a matching whose endpoints are all
contained in X. In particular, given a multigraph M , a matching on some vertex set X ⊆ V (M)
need not be a matching in M .

A q-edge coloring of M is a partition of E(M) into q matchings. The edge-chromatic number
of M , denoted by χ′(M), is the minimum number q such that M admits a q-edge coloring. A
theorem by Shannon [65] provides an upper bound on the edge-chromatic number in terms of
the maximum degree, though a looser bound with factor 2 can be achieved by a straightforward
greedy algorithm.

Theorem 2.3 ([65]). Every multigraph M of maximum degree d has χ′(M) ≤ ⌊32d⌋.

2.2 Linkages

Our hardness proofs for ColSub(H) crucially rely on linkages in graphs.

Definition 2.4 (Linkage and congestion). Given a graph H and a multigraph M with vertex
set X ⊆ V (H), an M -linkage in H is a collection of paths Q = (Puv)uv∈E(M) such that Puv has
endpoints u and v. For r ∈ N, we say that Q is r-congested if, for all w ∈ V (H), at most r paths
Puv ∈ Q contain w. If r = 1, we call Q an uncongested M -linkage.

6

v1

v2

v3

v4

v5

v6

P→
2,5

P ↑
2,5

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4

v
(1)
5

v
(1)
6

v
(2)
1

(a) (b)

Figure 1: (a) The grid graph ⊞6. Thick paths depict a 2-congested M -linkage, where M =
{v1v4, v2v5, v3v6} is a matching on the diagonal vertices. (b) The blowup graph ⊞6 ⃝⊗ J2, and an
uncongested M -linkage obtained from the 2-congested M -linkage in ⊞6.

Observe that, if Q is an uncongested M -linkage, then M is necessarily a matching. We
note that we commonly work with uncongested M -linkages. More precisely, we usually require
uncongested M -linkages in blowups of graphs H. Towards this end, it is often convenient to
“project” M back to the base graph H. Let H be a graph and let M be a multigraph with
V (M) ⊆ V (H ⃝⊗ Jq). We define the H-projection of M to be the multigraph π(M) with vertex
set V (π(M)) = {v | v(i) ∈ V (M)} and edge set E(π(M)) = {{vw | v(i)w(j) ∈ E(M), v ̸= w}}.

Lemma 2.5. Let H be a graph and let q ∈ N. Also let M be a matching with V (M) ⊆ V (H⃝⊗ Jq).
If there is a q-congested π(M)-linkage in H, then there is an uncongested M -linkage in H ⃝⊗ J2q.

Note that a blowup of order 2q rather than q is needed in Lemma 2.5. This is needed since
we do not allow self-loops in the projection, i.e., the projection of M ignores edges contained in
the same block {v(i) | i ∈ [q]}. For technical reasons, we decide to handle those edges separately
at the cost of losing a factor of two.

Proof. Let Q be a q-congested π(M)-linkage in H. We obtain an uncongested M -linkage Q′

in H ⃝⊗ J2q as follows. For a vertex w ∈ V (H), let P1, . . . , Pt (if any exists) be all paths in Q
that contain w as an internal vertex. We have t ≤ q by definition. We replace w in Pi with
the vertex w(q+i) from the blowup graph H ⃝⊗ J2q. Also, all endpoints of the paths are replaced
in the natural way, i.e., if P has endpoints u and v, and uv is the “projection” of u(i)v(j) in
M , then P gets endpoints u(i) and v(j). Finally, for each edge v(i)v(j) ∈ E(M), we add the
path (v(i), v(j)) to Q′. By the definition of the blowup graph, the resulting collection Q′ is an
uncongested M -linkage in H ⃝⊗ J2q.

The following example illustrates the notion of linkages and the interplay between congestion
and blowups; see Figure 1.

Example 2.6 (Grid graph). Write ⊞ℓ for the grid graph on vertex set [ℓ] × [ℓ]. For every
matching M on the set of diagonal vertices vi = (i, i) for i ∈ [ℓ], we observe that ⊞ℓ contains a
2-congested M -linkage Q(M) = {Puv}uv∈M . This 2-congested linkage induces an uncongested
M -linkage in ⊞ℓ ⃝⊗ J2 via Lemma 2.5. See also Figure 1.

More specifically, given an edge from u = (a, a) to v = (b, b) for a < b, we define Puv as
the concatenation of the path P→

uv on vertices u = (a, a), . . . , (b, a) and the path P ↑
uv on vertices

(b, a), . . . , (b, b) = v. The paths P→
uv for uv ∈M are vertex-disjoint (as distict paths have distinct

y-coordinates), and so are the paths P ↑
uv for uv ∈M (having distinct x-coordinates), so Q(M) is

indeed a 2-congested M -linkage.

7

3 Lower Bounds from Linkage Capacity

The Exponential-Time Hypothesis ETH [43] postulates the existence of a constant α > 0 such
that no O(2αn) time algorithm can decide, on input a 3-CNF formulas φ with n variables,
whether φ admits a satisfying assignment. Its a priori weaker counting version #ETH postulates
the same lower bound for counting the satisfying assignments of φ [28]. For both hypotheses,
the sparsification lemma [44, 28] rules out such algorithms even under the additional condition
that every variable in φ appears in at most C clauses, for some constant C ∈ N. By a standard
reduction, lower bounds follow for the problem 3-Coloring of deciding whether an input graph
G admits a proper vertex-coloring with 3 colors where no adjacent vertices receive the same
color; see for example [56, Theorem 3.2].

Theorem 3.1. Assuming ETH, there is a constant β > 0 such that 3-Coloring cannot be
solved in time O(2β·n) for n-vertex input graphs G of maximum degree 4. The same holds for
#3-Coloring under the counting variant of ETH.

This theorem is the foundation for the lower bounds shown in this paper.

3.1 Instances That Fit into Blowups

It will prove useful for us to generalize 3-Coloring slightly, by allowing edges to either enforce
equality or disequality of their endpoint colors. Since “equality edges” can be contracted without
changing the number of valid assignments, we obtain an immediate way to simulate edges in a
3-Coloring instance by paths.

Definition 3.2. Given a graph G = (V,E) with a partition E = E=∪ E̸=, a proper 3-assignment
is a function a : V → [3] such that a(u) = a(v) for all uv ∈ E=, while a(u) ̸= a(v) for all uv ∈ E̸=.
The problem 3-Assignment asks to determine the existence of a proper assignment on input
(G,E=, E̸=), while #3-Assignment asks to count them.

It is possible to convert instances G for 3-Assignment into instances X for ColSub(H).
Moreover, if G fits into a moderately small blowup of H, then X is only of moderately exponential
size. This can be shown by a simple “split-and-list” reduction that follows the sketch given in the
introduction for Clique.

Lemma 3.3. Let H be a fixed k-vertex graph with canonical vertex-coloring. Given a subgraph
G of H ⃝⊗ Jt for t ∈ N, a colored graph X on k · 3t vertices can be computed in 9t · poly(k, t) time
such that #Sub(H → X) equals the number of proper 3-assignments in G.

Proof of Lemma 3.3. Suppose V (H) = [k] and consider the partition of V (G) into Vw =
{w(1), . . . , w(t)} for w ∈ [k]. Define Xw for w ∈ [k] as the set of all proper 3-assignments
to G[Vw]. For w,w′ ∈ [k], we call two 3-assignments a ∈ Xw and a′ ∈ Xw′ compatible if their
union is a proper 3-assignment of G[Vw ∪ Vw′]. Let us define

AX := {(a1, . . . , ak) ∈ X1 × . . .×Xk | ∀ww′ ∈ E(H) : aw and aw′ are compatible}
AG := {a : V (G)→ [3] | a is proper 3-assignment of G}

We observe that the map a 7→ (a1, . . . , ak) from AG to AX , where aw is the restriction of a
to Vw, is a bijection. Indeed, in the image of a ∈ AG under this map, aw and aw′ are compatible
for all w,w′ ∈ E(H). Conversely, given (a1, . . . , ak) ∈ AX , recall that every edge uv ∈ E(G)
satisfies u ∈ Vw and v ∈ Vw′ for some w,w′ ∈ [k] with (a) w = w′, or (b) ww′ ∈ E(H). In case
(a), since aw is proper, the endpoints of uv receive a proper assignment under a. In case (b),
because the union of aw and aw′ is a proper 3-assignment of G[Vw ∪ Vw′], the endpoints of uv
receive a proper assignment under a. Thus a ∈ AG.

8

Finally, the graph X is defined on vertices
⋃

w∈[k]Xw, where each vertex in Xw is colored by
w ∈ [k]. An edge is present between a ∈ Xw and b ∈ Xw′ if and only if ww′ ∈ E(H) and a and b
are compatible. The (colored) subgraphs S of X isomorphic to H correspond to tuples in AX .
Indeed, V (S) corresponds to a tuple (a1, . . . , ak) ∈ X1 × . . .×Xk, and the presence of edges of
H in S implies that aw and aw′ are compatible for ww′ ∈ E(H). Since |Xw| ≤ 3t for all w ∈ [k],
the graph X can be computed by brute-force in 9t · poly(k, t) time.

3.2 The Linkage Capacity of a Graph

First, we need to define a term for vertex sets X in graphs that can be paired up arbitrarily via
paths in H. This resembles Diestel’s [30] notion of linkedness, see Section 5.1, which however
requires this property for the entire graph H.

Definition 3.4 (Matching-linked set). Given a graph H, we say that X ⊆ V (H) is matching-
linked if H contains an uncongested M -linkage for every matching M on vertex set X.

Remark 3.5. We stress that the condition in the definition is crucially required even if M is not
contained in E(H): Only the endpoints of M need to be contained in V (H).

A simple edge-coloring argument, also used in Lemma 3.11, shows that large matching-linked
sets X in blowups H ⃝⊗ Jt suffice to embed graphs G of maximum degree ∆ into H ⃝⊗ J2∆·t. Thus,
large matching-linked sets X in blowups of H are a useful “resource” attainable from H that
allows us to use Lemma 3.3. Not all such sets X however need to originate from matching-linked
sets in H itself. Consider a set X in H that just fails to be matching-linked, as in Example 2.6,
in the sense that X still admits M -linkages of congestion 2 in H. Such M -linkages then induce
uncongested M -linkages in H ⃝⊗ J2. As our goal is to embed a 3-Coloring instance G into a
moderately large blowup of H, such a constant-factor loss would be acceptable. This flexibility
is captured by the linkage capacity, which measures the maximum size of matching-linked sets in
blowups of H relative to the blowup order.

Definition 3.6 (Linkage capacity). The linkage capacity γ(H) is the supremum over c > 0 such
that H ⃝⊗ Jt contains a matching-linked set X with |X| = ⌊ct⌋ for all large enough t ∈ N.

Every graph H trivially satisfies 1 ≤ γ(H) ≤ |V (H)|. We show below that large matching-
linked sets in H lift into blowups, establishing high linkage capacity γ(H)—but as mentioned
above, even a matching-linked set in a small blowup of H suffices.

Lemma 3.7. Let H be a graph and suppose H ⃝⊗ Jq for q ∈ N contains a matching-linked set X.
Then γ(H) ≥ 1

3 · |X|/q.

Proof. The proof rests on the following claim.

Claim 3.8. Let H ′ be a graph and suppose X ′ ⊆ V (H ′) is a matching-linked set. Then
X ′

t := {v(i) | v ∈ X ′, 1 ≤ i ≤ t/3} is matching-linked in H ′ ⃝⊗ Jt for every t ∈ N.

Proof. Let M be a matching on X ′
t and let M ′ := π(M) be the H ′-projection of M . Observe that

M ′ has maximum degree at most t/3, so χ′(M ′) ≤ t/2 by Theorem 2.3. Hence, the multigraph
M can be partitioned into r ≤ t/2 matchings M1, . . .Mr on X ′. Since X ′ is a matching-linked
set, for every Mi, there is an uncongested Mi-linkage Qi in H ′. So Q :=

⋃
i∈[r]Qi is a r-congested

M ′-linkage in H ′, and there is an uncongested M -linkage in H ′ ⃝⊗ Jt by Lemma 2.5. ⌟

Let c < 1
3 · |X|/q. Then there is t0 ∈ N and c′ < 1

3 · |X| such that

c′ · ⌊t/q⌋ ≥ c · t (1)

for all t ≥ t0. Also, there is some ℓ0 ∈ N such that

|X| · ⌊ℓ/3⌋ ≥ ⌊c′ℓ⌋ (2)

9

for all ℓ ≥ ℓ0. Now let t ≥ max(t0, ℓ0 · q) and let ℓ := ⌊t/q⌋ ≥ ℓ0 and consider the graph
H ′ := H ⃝⊗ Jq. By Claim 3.8 the graph H ′ ⃝⊗ Jℓ contains a matching-linked set X ′

ℓ with

|X ′
ℓ| ≥ |X| · ⌊ℓ/3⌋

(1)
≥ ⌊c′ℓ⌋

(2)
≥ ⌊ct⌋.

Since (H ⃝⊗ Jq)⃝⊗ Jℓ is a subgraph of H ⃝⊗ Jt, we conclude that H ⃝⊗ Jt contains a matching-linked
set of size ⌊ct⌋, thus proving the lemma.

As a concrete example, let us use Example 2.6 to bound the linkage capacity of grids.

Lemma 3.9. For the ℓ-by-ℓ grid graph ⊞ℓ, we have γ(⊞ℓ) ≥ (ℓ− 1)/6.

Proof. Let V (⊞ℓ) = [ℓ]2 and ℓ′ ∈ {ℓ− 1, ℓ} be even. By Example 2.6, the set X := {(i, i)(1) | i ∈
[ℓ′]} is matching-linked in the blowup ⊞ℓ ⃝⊗ J2. The lemma follows by invoking Lemma 3.7.

3.3 Fitting Instances into Blowups via Linkage Capacity

Having introduced linkage capacity and its key properties, we now use it to embed graphs G
into blowups H ⃝⊗ Jt with t = O(n/γ(H)). If we can show that γ(H) is large, then ETH implies
strong lower bounds for ColSub(H) via Theorem 3.1 and Lemma 3.3.

A minor constructivity issue arises: Some techniques for lower-bounding γ(H) do not
necessarily yield efficient algorithms for finding linkages in blowups of H. Thus, it could a
priori be possible for G to embed into H ⃝⊗ Jt, yet we cannot efficiently find an embedding.
This concern is resolved by known algorithms for graphs of bounded neighborhood diversity [40,
Theorem 3.7], or through a self-contained argument given in Appendix A:

Theorem 3.10. Let f(k) = 3kk+2. Given a k-vertex graph H and t ≥ 2 as input, a matching-
linked set X of maximum size in H ⃝⊗ Jt can be found in O(tf(k)) time. Given additionally a
matching-linked set X in H ⃝⊗ Jt and a matching M with vertex set X, an M -linkage in H ⃝⊗ Jt
can be found in O(tf(k)) time.

We can now turn to our main lemma. In the following, given graphs G and G′ without
loops or multi-edges, a G-linkage Q = (Puv)uv∈E(G) in G′ is a topological G-minor model in G′

if paths Puv and Pu′v′ for uv, u′v′ ∈ E(G) in Q intersect only at endpoints. In particular, such
intersections can occur only if uv and u′v′ share a common vertex. We refer to the subgraph of
G′ induced by Q as the image of Q.

Lemma 3.11. Let H be a fixed k-vertex graph and let f(k) = 3kk+2. Then there is an O(nf(k))
time algorithm that, given an instance G for 3-Coloring with n vertices and maximum degree
4, outputs an instance for 3-Assignment with graph G′ such that

1. G′ is the image of a topological G-minor in H ⃝⊗ Jt for t = 8⌈n/γ(H)⌉, and

2. the proper 3-colorings of G correspond bijectively to the proper 3-assignments of G′.

Proof. Let t′ = ⌈n/γ(H) · 8/7⌉. Definition 3.6 implies that, if t′ is large enough then H ⃝⊗ Jt′

contains a matching-linked set X of size n.3 In O(nf(k)) time, Theorem 3.10 finds such a set X.
Fix V (G) = X in the following.

The straightforward greedy algorithm yields a 7-edge-coloring E(G) = M1 ∪ . . . ∪M7 in
time O(n). As X is matching-linked, the graph H ⃝⊗ Jt′ contains an uncongested Mi-linkage
Qi for every individual i ∈ [7]. Each linkage can be found O(nf(k)) time via Theorem 3.10.
These linkages together induce a topological G-minor model in H ⃝⊗ J7t′ (see Figure 2): Consider
V (H ⃝⊗ J7t′) to be partitioned into 7 layers such that layer i ∈ [7] contains the vertices v(j) with

3If t′ is not large enough, then n is bounded by a function of H. We can then compute the number q of
3-colorings of G in constant time and output a dummy instance G′ with q proper 3-assignments.

10

(a) (b)

Figure 2: (a) A graph G that fails to be embedded into ⊞3 due to the colored edges, which
are partitioned into three matchings. (b) An embedding of G into the blowup ⊞3 ⃝⊗ J3 as a
topological minor, where each colored edge gets routed via new vertices from the blowup.

v ∈ V (H) and j ∈ (t′ − 1)i+ [t′]. By placing non-endpoint vertices from the linkages Q1, . . . , Q7

into different layers and keeping all endpoints in the first layer, we obtain a topological G-minor
model Q in H ⃝⊗ J7t′ . Let us write G′ for the image of Q.

We finalize the construction of the 3-Assignment instance by specifying a partition of E(G′)
into E= and E̸=: For each path Puv in Q, place one arbitrary edge into E̸= and all other edges
into E=. Then the proper 3-assignments to G′ correspond to the proper 3-colorings of G, since
contracting all equality edges in G′ (which does not change the number of 3-assignments) yields
an isomorphic copy of G on disequality edges.

Combining the above, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.2. By Theorem 3.1, ETH implies a constant β > 0 such that no O(2β·n)-time
algorithm solves 3-Coloring on n-vertex graphs G of maximum degree 4. We set γ0 = 26/β
and α = β/10 and derive a contradiction from an O(sα·γ)-time algorithm for ColSub(H) on
s-vertex input graphs, where H is any fixed graph with γ = γ(H) ≥ γ0.

In the following, let G be an instance for 3-Coloring of maximum degree 4. In time
O(nf(k)), Lemma 3.11 computes from G an equivalent instance for 3-Assignment with a graph
G′ ⊆ H ⃝⊗ Jt for t = 8⌈n/γ⌉. In time 9t · poly(k, t), Lemma 3.3 then yields a graph X with
|V (X)| ≤ k · 3t such that 3-assignments in G′ correspond to colorful H-copies in X. The overall
running time to construct X is

O(nf(k)) + 98⌈n/γ⌉ · poly(k, t) = O(226n/γ) = O(2β·n). (3)

In the last step, we use γ ≥ γ0 = 26/β. Then use the assumed O(sβ/10·γ)-time algorithm for
ColSub(H) on s-vertex input graphs. Its running time on the graph X constructed before, with
s ≤ k · 3t vertices, is

O((k · 3t)β/10·γ) = O(35⌈n/γ⌉·β/10·γ) = O(3β/2·n) = O(2β·n). (4)

Combining Equation (3) and Equation (4), we conclude that both constructing X and solving
ColSub(H) on X can be achieved in overall time O(2β·n). This contradicts Theorem 3.1, also
for the counting version.

4 Switching Networks

In this section, we consider a construction by Beneš [6] that yields k-vertex graphs with degree
4 and a linkage capacity of Ω(k/ log k). In particular, this allows us to complete the fully
self-contained proof of Theorem 1.1.

11

v1 w1

v2 w2

v3 w3

v4 w4

v5 w5

v6 w6

v7 w7

v8 w8

v↑1 w↑
1

v↓1 w↓
1

v↑2 w↑
2

v↓2 w↓
2

v↑3 w↑
3

v↓3 w↓
3

v↑4 w↑
4

v↓4 w↓
4

B↓
2

B↑
2

v8 w8

v7 w7

v6 w6

v5 w5

v4 w4

v3 w3

v2 w2

v1 w1

(a) (b)

Figure 3: (a) Recursive construction of Beneš network B3 with 8 inputs and 8 outputs from two
copies of B2. (b) The augmented Beneš network B̌3 is obtained by adding a matching to the
outputs of B3, shown as curved edges. Thick paths indicate an M -linkage in B̌3 for the matching
M = {v1v7, v2v3, v4v6, v5v8} on the input vertices.

The Beneš network Bℓ for ℓ ∈ N has 2ℓ distinguished input and output vertices. In our terms,
for every matching M between the inputs and outputs, the network Bℓ admits an uncongested
M -linkage. By “short-circuiting” the outputs, we obtain an augmented Beneš network B̌ℓ, which
allows routing paths from inputs back to inputs. In our terms, the inputs form a matching-linked
set, since every matching M on the inputs admits an uncongested M -linkage in B̌ℓ.

Algorithm 1 Construct plain Beneš networks
procedure Benes(ℓ) returns Bℓ with s = 2ℓ in-/outputs

if ℓ = 1 then return K2,2 with in-/outputs vi, wi for i ∈ [2]
else

B↑ ← Benes(ℓ− 1) with in-/outputs v↑
i , w

↑
i for i ∈ [s/2]

B↓ ← Benes(ℓ− 1) with in-/outputs v↓
i , w

↓
i for i ∈ [s/2]

B ← vertex-disjoint union of B↑ and B↓

for i ∈ [s/2] do add to B
all four edges between {vi, vi+s/2} and {v↑

i , v
↓
i },

all four edges between {wi, wi+s/2} and {w↑
i , w

↓
i }

return B with in-/outputs vi, wi for i ∈ [s]

Definition 4.1 (Beneš networks). The plain Beneš network Bℓ for ℓ ∈ N is the graph with
distinguished inputs vi and outputs wi, for i ∈ [s] with s = 2ℓ, returned by Benes(ℓ) in
Algorithm 1. The augmented Beneš network B̌ℓ is obtained from Bℓ by adding an edge between
outputs w2i−1 and w2i, for each i ∈ [s/2].

Both Bℓ and B̌ℓ clearly have maximum degree 4. Let T (s) for s = 2ℓ count the vertices in
the s-input Beneš network Bℓ or B̌ℓ. By construction, we have T (s) = 2 · T (s/2) + 2s, and thus
T (s) = 2s log2 s. Beneš networks are designed to admit uncongested linkages between the inputs
and outputs [6]:

Theorem 4.2. For ℓ ∈ N, the set V of inputs in B̌ℓ is matching-linked, with |V | = s = 2ℓ.
Moreover, given as input ℓ ∈ N and a matching M on V , an uncongested M -linkage in B̌ℓ can be
computed in O(s log s) time.

12

A proof is given in Appendix B for completeness. With Lemma 3.7, we obtain:

Corollary 4.3. For s = 2ℓ, we have γ(B̌ℓ) ≥ s/3.

By combining Theorem 1.2 and Corollary 4.3, we can give an elementary proof of Theorem 1.1
(in a slightly modified form; see Remark 4.5).

Theorem 4.4. Assuming ETH, there exists a fixed constant α > 0 and an infinite sequence of
graphs H1, H2, . . . such that, for all k ∈ N, the graph Hk has k vertices and maximum degree 4,
and ColSub(Hk) does not admit an O(nα·k/ log k)-time algorithm.

Proof. For every k ∈ N, pick ℓ ∈ N maximal such that |V (B̌ℓ)| ≤ k. Let Hk be obtained from B̌ℓ

by adding isolated vertices until the number of vertices is k. Since |V (B̌ℓ)| = 2ℓ+1ℓ, we conclude
that 2ℓ+1ℓ ≤ k < 2ℓ+2(ℓ+ 1) which implies that k/ log2 k < 2ℓ+2. So

γ(Hk) ≥ γ(B̌ℓ) ≥ 2ℓ/3 >
1

12
· k/ log2 k

by Corollary 4.3. Now the theorem follows from Theorem 1.2.

Remark 4.5. Observe that Theorem 1.1 provides a sequence of graphs of maximum degree 3
whereas Theorem 4.4 “only” guarantees maximum degree 4. However, the augmented Beneš
networks B̌ℓ can easily be modified to have maximum degree 3 by replacing each vertex with an
edge, so becomes , and all other relevant properties remain the same.

For readers familiar with expander graphs, let us also remark that the Beneš network Bℓ

with s = 2ℓ does not have constant expansion, as witnessed by its “upper half” U that contains
the vertices of B↑

ℓ−1 and all inputs and outputs with indices i ∈ [s/2]: We have |U | = s log2 s,
but the 2s neighbors of U are all contained in the first two and last two columns of Bℓ. This also
holds for the augmented B̌ℓ.

Universality of augmented Beneš networks

As an independent point of interest, let us remark that blowups of Beneš networks are universal
for bounded-degree graphs with respect to topological minor containment: Mimicking the proof
of Lemma 3.11, every n-vertex graph of maximum degree ∆ can be found as a topological minor
in the 2∆-blowup of an augmented Beneš network with n inputs.

For comparison, every graph that contains every n-vertex graph of maximum degree ∆
as a subgraph must necessarily have Ω(n2−2/∆) edges [3]. Under the more relaxed notion of
universality via topological minor containment, Beneš networks show that universal graphs with
only O(∆2 · n log n) vertices and edges are achievable.

Theorem 4.6. For every n, ℓ ∈ N, every graph G of maximum degree ∆ and n ≤ 2ℓ vertices
is a topological minor of B̌ℓ ⃝⊗ J2∆−1. Moreover, on input G, a topological G-minor model in
B̌ℓ ⃝⊗ J2∆−1 can be computed in polynomial time.

Proof. By Theorem 4.2, the inputs in B̌ℓ form a matching-linked set X of size s = 2ℓ ≥ n. View
V (G) ⊆ X and decompose E(G) into 2∆− 1 matchings via the greedy edge-coloring algorithm.
For each matching M , use Theorem 4.2 to find an M -linkage Q in B̌ℓ and place the internal
vertices of Q in a private layer of B̌ℓ ⃝⊗ J2∆, as in the proof of Lemma 3.11. The union of the
linkages constructed this way is a topological G-minor model in B̌ℓ ⃝⊗ J2∆.

5 Patterns of Superlinear Density

We turn our attention to dense patterns, i.e., k-vertex patterns H of average degree d(H) ∈ ω(1).
Unlike the sparse setting discussed earlier, a linkage capacity of Θ(k) is achievable in the dense
case, which implies tight lower bounds for ColSub(H) under ETH.

13

5.1 Worst Case

We show that, for every graph H, the average degree d(H) = 2|E(H)|/|V (H)| is a lower bound on
the linkage capacity of H, up to a constant factor. First, we use Mader’s Theorem [58, Corollary
1] to extract a highly connected subgraph from H. A graph H is ℓ-connected if |V (H)| > ℓ and
H −X is connected for every set X ⊆ V (H) with |X| < ℓ.

Theorem 5.1 (see [30, Theorem 1.4.3]). Every graph H with d(H) ≥ 4ℓ contains a (ℓ + 1)-
connected subgraph H ′ with d(H ′) > d(H)− 2ℓ.

Second, within the scope of this subsection only, we say that a graph H is ℓ-globally linked
if |V (H)| ≥ 2ℓ and each set X ⊆ V (H) of size at most 2ℓ is matching-linked in H. (In graph
theory, this notion is usually just called ℓ-linked—see, e.g., [30]. In our paper, we refer to it as
ℓ-globally linked to distinguish it from our previous definitions of linkedness.) This definition
implies in particular that H contains a matching-linked set X with |X| ≥ 2ℓ. Thomas and
Wollan [66, Corollary 1.2] show that high connectivity implies high global linkedness.

Theorem 5.2 (see [30, Theorem 3.5.3]). Let H be a graph and ℓ ∈ N. If H is 2ℓ-connected and
d(H) ≥ 16ℓ, then H is ℓ-globally linked.

Together, these two theorems imply a lower bound on the linkage capacity that is linear in
the average degree.

Lemma 5.3. For every graph H, we have γ(H) ≥ d(H)/48.

Proof. Theorem 5.1 yields a ⌈d(H)/4⌉-connected subgraph H ′ of H with d(H ′) > d(H)/2.
Theorem 5.2 shows that H ′ is ⌈d(H)/32⌉-globally linked and thus contains a matching-linked set
X of size at least d(H)/16. Then Lemma 3.7 shows that γ(H) ≥ γ(H ′) ≥ d(H)/48, where the
first inequality uses that H ′ is subgraph of H.

Now, Theorem 1.3 follows from Theorem 1.2 and Lemma 5.3.

5.2 Average Case

To show the hardness in the average case, we consider the linkage capacity of the Erdős-Rényi
random graph. Let G(k, p) denote the distribution over k-vertex graphs where each edge is
included independently with probability p. We need the following theorem adapted from [15],
where “with high probability” refers to a probability tending to 1 for k →∞.

Theorem 5.4. Let ε > 0 be a constant. For all p ≥ (1 + ε) log(k)/k the following holds: With
high probability, for a random graph H ∼ G(k, p), every matching M on V (H) can be partitioned
into r = O(log k/ log kp) matchings M1, . . . ,Mr such that H contains an uncongested Mi-linkage
for all i ∈ [r].

The original theorem statement and proof in [15, Corollary 1.1] are concerned with the fixed-
sized random graph model G(k,m), and only deals with even k. But on the other hand, they
give a stronger statement concerning the algorithmic efficiency of finding the desired partition,
that it can be obtained with high probability by a random partition. In Appendix C, we give a
proof of the version stated here.

The last theorem can be used to find large matching-linked sets inside a proper blowup of a
random graph, which implies a high linkage capacity by Lemma 3.7.

Lemma 5.5. Let ε > 0 be a constant. For all p ≥ (1 + ε) log(k)/k, the linkage capacity of
H ∼ G(k, p) is at least Ω(k log(kp)

log k) with high probability.

14

Proof. Let r be the bound specified in Theorem 5.4 and consider the blowup graph H⃝⊗ Jr+1. Let
X := {v(1) | v ∈ V (H)}. We show that X is matching-linked in H ⃝⊗ J2r with high probability,
and the lemma then follows using Lemma 3.7.

Let M ′ be a matching on X. By the definition of X, its H-projection, M := π(M ′), is also a
matching on V (H). We invoke Theorem 5.4 on the graph H with respect to the matching M to
obtain a partition M1, . . . ,Mr, such that, for all i ∈ [r] there is an uncongested Mi-linkage Qi in
H. Then Q =

⋃
i∈[r]Qi is an r-congested M -linkage in H. So there is an uncongested M ′-linkage

in H ⃝⊗ J2r by Lemma 2.5.

Now, Theorem 1.4 follows from Theorem 1.2 and Lemma 5.5.

6 Large-Treewidth Patterns and Concurrent Flows

In this section, we relate the linkage capacity of a graph to its treewidth. Towards this end, we
first connect the linkage capacity to certain (fractional) multicommodity flows, and afterward
rely on existing connections between such flows and treewidth [59, Section 3.1].

More specifically, given a graph H and W ⊆ V (H), we consider the following multicommodity
flow problem. For every pair (u, v) ∈W 2, there is a distinct commodity uv that can be sent in
arbitrary fractional amounts along different paths from u to v in H. The goal is to determine
whether all pairs (u, v) can concurrently send an ϵ amount of uv to each other, while the total
flow through every vertex w ∈ V (H) is at most some globally fixed capacity C. Formally, this is
captured by the following LP:

Definition 6.1. Let H be a graph. For u, v ∈ V (H), write PH(uv) for the set of paths from u to
v in H; the set PH(uv) for u = v contains only the path (u). Given W ⊆ V (H), the concurrent
flow LP (for H and W) with vertex capacity C > 0 asks to

maximize ε

subject to
∑

p∈PH(uv)

xp ≥ ε ∀u, v ∈W

∑
u,v∈W

∑
p∈PH(uv) : w∈p

xp ≤ C ∀w ∈ V (G)

xp ≥ 0 ∀u, v ∈W,p ∈ PH(uv).

We write ε(H,W) to denote the optimal LP value for capacity C = 1.

While an optimal solution for C = 1 may assign fractional values to the variables xp, every
solution can be scaled to an integral solution, increasing the required capacity and the optimal
LP value by the same factor. This integral solution then induces a congested model of the
multigraph Kt,q in H, where t := |W | and q ∈ N is suitably chosen, and Kt,q has t vertices and
contains each possible (undirected) edge with multiplicity q.

Lemma 6.2. Let H be a graph and W ⊆ V (H) be a set of size t. Then there is some D ∈ N
such that q := D · ε(H,W) is an integer and H contains a D-congested Kt,q-linkage, where we
set V (Kt,q) = W .

Proof. Let D be the common denominator of the values for all xp in a (rational) optimal solution
of the concurrent flow LP for H and W with capacity C = 1. Scaling all values by D yields
an integral solution of value q := D · ε(H,W) for the LP with capacity D. Now, consider the
multiset Q which, for every distinct u, v ∈W , contains every path p ∈ PH(uv) with multiplicity
xp. Then Q is a D-congested Kt,q-linkage where V (Kt,q) = W .

15

Using this congested Kt,q-linkage, we will establish lower bounds on the linkage capacity of
H. The following lemma will be useful, as it allows us to route arbitrary multigraphs of bounded
degree via short paths in this Kt,q.

Lemma 6.3. Let q ∈ N and let M be a multigraph with V (M) = [t] and maximum degree at
most qt. Then there is an M -linkage Q = (Puv)uv∈E(M) in Kt such that every edge e ∈ E(Kt)
appears in at most 18q paths in Q.

Proof. If t ≤ 12 the statement trivially holds by choosing Puv = (u, v) for every uv ∈ E(M). So
in the remainder of the proof, we assume that t > 12.

First observe that |E(M)| ≤ qt2/2 since degM (v) ≤ qt for all v ∈ V (M). For every
e = uv ∈ E(M) we set Puv = (u, xe, v) for some suitable middle vertex xe ∈ V (Kt) \ {u, v}.
We construct the paths one by one in a greedy fashion. Suppose P is the collection of paths
constructed so far. We ensure that

(a) every edge of Kt appears in at most 18q paths in P, and

(b) every vertex is the middle vertex on at most qt paths in P.

Now consider an edge e = uv ∈ E(M) that is not yet covered by P . We argue that there is some
x ∈ V (Kt) \ {u, v} such that P ∪ {(u, x, v)} still satisfies Conditions (a) and (b).

Since |E(M)| ≤ qt2/2, there are at most t/2 vertices that are the middle vertex of exactly qt
paths in P (i.e., they cannot be selected as a middle vertex). Also, the total number of edges
incident to u used in P is at most 3qt since degM (u) ≤ qt and u is the middle vertex of at most
qt paths. So there are most t/6 vertices x ∈ V (G) \ {u} such that the edge ux is full, i.e., ux
already appears in 18q paths in P. Similarly, there are most t/6 vertices x ∈ V (G) \ {v} such
that the edge vx is full. Since

t

2
+ 2 ·

(
1 +

t

6

)
=

5

6
t+ 2 < t,

there exists at least one xe ∈ V (Kt) \ {u, v} such that P ∪ {(u, xe, v)} still satisfies Conditions
(a) and (b).

We can conclude that a large value of the concurrent flow LP implies large linkage capacity.

Theorem 6.4. Let H be a graph and W ⊆ V (H). Then γ(H) ≥ ε(H,W) · |W |2/108.

Proof of Theorem 6.4. Let D ∈ N be the integer obtained from Lemma 6.2 and set D′ := 18 ·D.
Let q := D · ε(H,W) which, by Lemma 6.2, is an integer. Observe that ε(H,W) ≤ 1/|W |, so
D ≥ q · |W |. Finally, let s := q · |W |.

Consider the graph H ⃝⊗ J2D′ and let

X := {w(i) | w ∈W, i ∈ [s]}.

We show that X is matching-linked in H ⃝⊗ J2D′ . Let M be a matching on X. Let M̂ := π(M)
be the H-projection of M . Observe that deg

M̂
(w) ≤ s = q · |W | for all w ∈W .

Lemma 6.3 finds an M̂ -linkage Q = (Puv)uv∈E(M̂)
in Kt,q (where V (Kt,q) = W) such that

every edge of Kt,q appears in at most 18 of those paths. Moreover, by Lemma 6.2, the graph
H contains a D-congested Kt,q-linkage Q′ = (P ′

uv)uv∈E(Kt,q). We construct a D′-congested
M̂ -linkage Q̂ = (P̂uv)uv∈E(M̂)

in H as follows. For every uv ∈ E(M̂) we obtain P̂uv from Puv by

substituting P ′
e for every edge e appearing on Puv. Clearly, Q̂ is D′-congested since D′ = 18 ·D.

So there is an uncongested M -linkage in H ⃝⊗ J2D′ by Lemma 2.5.
Overall, we get that X is matching-linked in H ⃝⊗ J2D′ . So

γ(G) ≥ 1

3
· |X|
2 ·D′ =

1

3
· s · |W |
36 ·D

=
1

108
· q · |W |

2

D
=

1

108
· ε(H,W) · |W |2

by Lemma 3.7.

16

To bound the linkage capacity by the treewidth, we combine Theorem 6.4 with the following
lemma that is (implicitly) shown by Marx [59].

Lemma 6.5 ([59]). Let H be a graph of treewidth t. Then there is a set W ⊆ V (H) such that
|W | = t and ε(H,W) = Ω(1/(t log t)).

The basic idea to prove the lemma is to consider a set W ⊆ V (H) of size t that does not
admit balanced separators; large treewidth guarantees such a set (see [59, Lemma 3.2]). Then,
using results from [37, 55], we obtain a bound on the optimal value of the dual LP, which gives
ε(H,W) = Ω(1/(t log t)) (see [59, Proof of Lemma 3.6]).

Corollary 6.6. Let H be a graph of treewidth t. Then γ(H) = Ω(t/ log t).

In particular, combining Theorem 1.2 and Corollary 6.6 allows us to recover the complexity
lower bounds on ColSub(H) proved in [59].

7 Implications for Counting Small Induced Subgraphs

We conclude with an application of our lower bounds for the complexity of counting induced
k-vertex subgraphs. A k-vertex graph invariant Φ is an isomorphism-invariant map from k-vertex
graphs H to some ring. We consider Φ to be fixed and wish to sum Φ(G[X]) over all k-vertex
subsets X of an input graph G to count, e.g., the planar or Hamiltonian induced k-vertex
subgraphs of G. Formally, for a k-vertex graph invariant Φ, the problem #IndSub(Φ) takes as
input a graph G, and asks to compute

#IndSub(Φ→ G) :=
∑

X⊆V (G)

Φ(G[X]).

This problem was first studied in its parameterized version (where k is part of the input) by
Jerrum and Meeks [46, 47, 48] and received significant attention in recent years [23, 24, 31, 32,
33, 38, 63, 64].

To determine the complexity of #IndSub(Φ), recent works usually analyze the alternating
enumerator to build a generic reduction from #ColSub(H). Formally, the alternating enumerator
of a graph invariant Φ on a graph H is defined as4

Φ̂(H) = (−1)|E(H)|
∑

S⊆E(H)

(−1)|S|Φ(H[S]),

where H[S] has vertex set V (H) and edge set S. Now, suppose H is a k-vertex graph with
Φ̂(H) ̸= 0. Then the problem #ColSub(H) can be reduced to #IndSub(Φ) in polynomial time
(see, e.g., [24, Lemmas 3.3 & A.3]). Hence, building on Theorem 1.2, we also obtain new lower
bounds for #IndSub(Φ) assuming Φ̂(H) ̸= 0 for suitable graphs H. In particular, we obtain
the following result via Lemma 5.3 which improves over the corresponding lower bound in [24,
Theorem 3.5(a)] (see also [31] and [32, Lemma 2.2]). We give a proof in Appendix D.

Theorem 7.1. There is a universal constant αind > 0 and an integer N0 ≥ 1 such that for all
numbers k, ℓ ≥ 1, the following holds: If Φ is a k-vertex graph invariant and there exists a graph
H with Φ̂(H) ̸= 0 and E(H) ≥ k · ℓ ≥ N0, then #IndSub(Φ) cannot be solved in time O(nαind·ℓ)
unless ETH fails.

As pointed out in Section 1.2, the weaker version, which only rules out an exponent of
αind · ℓ/

√
log ℓ, has been used to derive various lower bounds for specific types of invariants in

[24, 32, 64]. All these lower bounds are improved by our new results. Let us give one concrete
example, which improves over [24, Corollary 5.2]. For a k-vertex graph invariant Φ, we write
supp(Φ) for the set of all graphs H with V (H) = [k] and Φ(H) ̸= 0.

4The precise formula is not relevant here, but we still give it for completeness.

17

Corollary 7.2. For every 0 < ε < 1 there are N0, δ > 0 such that the following holds. Let
k ≥ N0 and let Φ be a k-vertex graph invariant with 1 ≤ | supp(Φ)| ≤ (2 − ε)(

k
2). Then no

algorithm solves #IndSub(Φ) in time O(nδ·k) unless ETH fails.

We stress that the exponent in the lower bound of Corollary 7.2 is asymptotically optimal.

Proof. Let 0 < ε < 1. By [24, Theorem 5.1] there is some δ′ > 0 such that for every k ≥ 1 and
every k-vertex graph invariant Φ satisfying the condition of the theorem, there is a k-vertex graph
H such that Φ̂(H) ̸= 0 and |E(H)| ≥ δ′ ·

(
k
2

)
. Therefore, the theorem follows from Theorem 7.1

by setting δ := 1
3 · δ

′ · αind and choosing ℓ := 1
3 · δ

′ · k.

References

[1] Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultaneous
feedback edge set: A parameterized perspective. Algorithmica, 83(2):753–774, 2021. doi:
10.1007/S00453-020-00773-9.

[2] Noga Alon. Explicit expanders of every degree and size. Comb., 41(4):447–463, 2021.
doi:10.1007/S00493-020-4429-X.

[3] Noga Alon, Michael R. Capalbo, Yoshiharu Kohayakawa, Vojtech Rödl, Andrzej Rucinski,
and Endre Szemerédi. Universality and tolerance. In 41st Annual Symposium on Foundations
of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA,
pages 14–21. IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892007.

[4] Noga Alon and Dániel Marx. Sparse balanced partitions and the complexity of subgraph
problems. SIAM J. Discret. Math., 25(2):631–644, 2011. doi:10.1137/100812653.

[5] Saeed A. Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing with
congestion in acyclic digraphs. Inf. Process. Lett., 151, 2019. doi:10.1016/J.IPL.2019.
105836.

[6] Václav E. Beneš. Permutation groups, complexes, and rearrangeable connecting networks.
Bell System Tech. J., 43(4):1619–1640, 1964. doi:10.1002/j.1538-7305.1964.tb04102.x.

[7] Béla Bollobás. The diameter of random graphs. Trans. Amer. Math. Soc., 267(1):41–52,
1981. doi:10.2307/1998567.

[8] Édouard Bonnet, Sergio Cabello, Bojan Mohar, and Hebert Pérez-Rosés. The inverse
voronoi problem in graphs I: hardness. Algorithmica, 82(10):3018–3040, 2020. doi:10.1007/
S00453-020-00716-4.

[9] Edouard Bonnet, Panos Giannopoulos, and Michael Lampis. On the parameterized
complexity of red-blue points separation. J. Comput. Geom., 10(1):181–206, 2019.
doi:10.20382/JOCG.V10I1A7.

[10] Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained
complexity of k-OPT in bounded-degree graphs for solving TSP. In Michael A. Bender, Ola
Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages
23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.
ESA.2019.23.

[11] Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems.
ACM Trans. Algorithms, 16(4):42:1–42:23, 2020. doi:10.1145/3398684.

18

https://doi.org/10.1007/S00453-020-00773-9
https://doi.org/10.1007/S00453-020-00773-9
https://doi.org/10.1007/S00493-020-4429-X
https://doi.org/10.1109/SFCS.2000.892007
https://doi.org/10.1137/100812653
https://doi.org/10.1016/J.IPL.2019.105836
https://doi.org/10.1016/J.IPL.2019.105836
https://doi.org/10.1002/j.1538-7305.1964.tb04102.x
https://doi.org/10.2307/1998567
https://doi.org/10.1007/S00453-020-00716-4
https://doi.org/10.1007/S00453-020-00716-4
https://doi.org/10.20382/JOCG.V10I1A7
https://doi.org/10.4230/LIPICS.ESA.2019.23
https://doi.org/10.4230/LIPICS.ESA.2019.23
https://doi.org/10.1145/3398684

[12] Édouard Bonnet and Florian Sikora. The graph motif problem parameterized by the structure
of the input graph. Discret. Appl. Math., 231:78–94, 2017. doi:10.1016/J.DAM.2016.11.
016.

[13] Karl Bringmann. Fine-grained complexity theory (tutorial). In Rolf Niedermeier and
Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer
Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages
4:1–4:7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.
STACS.2019.4.

[14] Karl Bringmann, László Kozma, Shay Moran, and N. S. Narayanaswamy. Hitting set for
hypergraphs of low VC-dimension. In Piotr Sankowski and Christos D. Zaroliagis, editors,
24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, volume 57 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.ESA.2016.23.

[15] Andrei Z. Broder, Alan M. Frieze, Stephen Suen, and Eli Upfal. An efficient algorithm for
the vertex-disjoint paths problem in random graphs. In Éva Tardos, editor, Proceedings of
the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996,
Atlanta, Georgia, USA, pages 261–268. ACM/SIAM, 1996. URL: http://dl.acm.org/
citation.cfm?id=313852.314072.

[16] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005. doi:10.1016/J.IC.2005.05.001.

[17] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. doi:
10.1016/J.JCSS.2006.04.007.

[18] Rajesh Chitnis, Andreas E. Feldmann, and Pasin Manurangsi. Parameterized approximation
algorithms for bidirected Steiner network problems. ACM Trans. Algorithms, 17(2):12:1–
12:68, 2021. doi:10.1145/3447584.

[19] Rajesh Hemant Chitnis, Andreas E. Feldmann, Mohammad T. Hajiaghayi, and Dániel Marx.
Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals
(and extensions). SIAM J. Comput., 49(2):318–364, 2020. doi:10.1137/18M122371X.

[20] Vincent Cohen-Addad, Éric C. de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost
tight lower bounds for hard cutting problems in embedded graphs. J. ACM, 68(4):30:1–30:26,
2021. doi:10.1145/3450704.

[21] Jason Crampton, Robert Crowston, Gregory Z. Gutin, Mark Jones, and Maadapuzhi S.
Ramanujan. Fixed-parameter tractability of workflow satisfiability in the presence of
seniority constraints. In Michael R. Fellows, Xuehou Tan, and Binhai Zhu, editors, Frontiers
in Algorithmics and Algorithmic Aspects in Information and Management, Third Joint
International Conference, FAW-AAIM 2013, Dalian, China, June 26-28, 2013. Proceedings,
volume 7924 of Lecture Notes in Computer Science, pages 198–209. Springer, 2013. doi:
10.1007/978-3-642-38756-2_21.

[22] Radu Curticapean, Holger Dell, and Thore Husfeldt. Modular counting of subgraphs:
Matchings, matching-splittable graphs, and paths. In Petra Mutzel, Rasmus Pagh, and
Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021,
September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages
34:1–34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
ESA.2021.34.

19

https://doi.org/10.1016/J.DAM.2016.11.016
https://doi.org/10.1016/J.DAM.2016.11.016
https://doi.org/10.4230/LIPICS.STACS.2019.4
https://doi.org/10.4230/LIPICS.STACS.2019.4
https://doi.org/10.4230/LIPICS.ESA.2016.23
http://dl.acm.org/citation.cfm?id=313852.314072
http://dl.acm.org/citation.cfm?id=313852.314072
https://doi.org/10.1016/J.IC.2005.05.001
https://doi.org/10.1016/J.JCSS.2006.04.007
https://doi.org/10.1016/J.JCSS.2006.04.007
https://doi.org/10.1145/3447584
https://doi.org/10.1137/18M122371X
https://doi.org/10.1145/3450704
https://doi.org/10.1007/978-3-642-38756-2_21
https://doi.org/10.1007/978-3-642-38756-2_21
https://doi.org/10.4230/LIPICS.ESA.2021.34
https://doi.org/10.4230/LIPICS.ESA.2021.34

[23] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis
for counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King,
editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. doi:
10.1145/3055399.3055502.

[24] Radu Curticapean and Daniel Neuen. Counting small induced subgraphs: Hardness via
fourier analysis. CoRR, abs/2407.07051, 2024. arXiv:2407.07051.

[25] Radu Curticapean and Mingji Xia. Parameterizing the permanent: Genus, apices, minors,
evaluation mod 2k. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 994–1009. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.65.

[26] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

[27] Argyrios Deligkas, Eduard Eiben, and Tiger-Lily Goldsmith. Parameterized complexity of
hotelling-downs with party nominees. In Luc De Raedt, editor, Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria,
23-29 July 2022, pages 244–250. ijcai.org, 2022. doi:10.24963/IJCAI.2022/35.

[28] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential
time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

[29] Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth
with applications through bidimensionality. Comb., 28(1):19–36, 2008. doi:10.1007/
S00493-008-2140-4.

[30] Reinhard Diestel. Graph Theory. Springer Berlin, 5 edition, 2017. doi:10.1007/
978-3-662-53622-3.

[31] Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting induced
subgraphs: An algebraic approach to #W[1]-hardness. Algorithmica, 84(2):379–404, 2022.
doi:10.1007/s00453-021-00894-9.

[32] Simon Döring, Dániel Marx, and Philip Wellnitz. Counting small induced subgraphs
with edge-monotone properties. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell,
editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1517–1525. ACM, 2024. doi:
10.1145/3618260.3649644.

[33] Simon Döring, Dániel Marx, and Philip Wellnitz. From graph properties to graph parameters:
Tight bounds for counting on small subgraphs. CoRR, abs/2407.06801, 2024. arXiv:
2407.06801, doi:10.48550/ARXIV.2407.06801.

[34] Eduard Eiben, Gregory Z. Gutin, Philip R. Neary, Clément Rambaud, Magnus Wahlström,
and Anders Yeo. Preference swaps for the stable matching problem. Theor. Comput. Sci.,
940(Part):222–230, 2023. doi:10.1016/J.TCS.2022.11.003.

[35] Eduard Eiben, Dusan Knop, Fahad Panolan, and Ondrej Suchý. Complexity of the Steiner
network problem with respect to the number of terminals. In Rolf Niedermeier and Christophe
Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science,
STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 25:1–25:17.

20

https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://arxiv.org/abs/2407.07051
https://doi.org/10.1109/FOCS.2015.65
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.24963/IJCAI.2022/35
https://doi.org/10.1145/2635812
https://doi.org/10.1007/S00493-008-2140-4
https://doi.org/10.1007/S00493-008-2140-4
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/s00453-021-00894-9
https://doi.org/10.1145/3618260.3649644
https://doi.org/10.1145/3618260.3649644
https://arxiv.org/abs/2407.06801
https://arxiv.org/abs/2407.06801
https://doi.org/10.48550/ARXIV.2407.06801
https://doi.org/10.1016/J.TCS.2022.11.003

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.STACS.
2019.25.

[36] David Eppstein and Daniel Lokshtanov. The parameterized complexity of finding point
sets with hereditary properties. In Christophe Paul and Michal Pilipczuk, editors, 13th
International Symposium on Parameterized and Exact Computation, IPEC 2018, August
20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 11:1–11:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.IPEC.2018.11.

[37] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.
doi:10.1137/05064299X.

[38] Jacob Focke and Marc Roth. Counting small induced subgraphs with hereditary properties.
SIAM J. Comput., 53(2):189–220, 2024. doi:10.1137/22m1512211.

[39] Fedor V. Fomin, Fahad Panolan, Maadapuzhi S. Ramanujan, and Saket Saurabh. On
the optimality of pseudo-polynomial algorithms for integer programming. Math. Program.,
198(1):561–593, 2023. doi:10.1007/S10107-022-01783-X.

[40] Robert Ganian. Using neighborhood diversity to solve hard problems. CoRR, abs/1201.3091,
2012. arXiv:1201.3091.

[41] Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM J. Comput., 47(1):241–269, 2018. doi:10.1137/16M109884X.

[42] Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized
complexity of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013.
doi:10.1007/S00453-012-9685-8.

[43] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/JCSS.2000.1727.

[44] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/JCSS.
2001.1774.

[45] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/J.JCSS.
2012.04.004.

[46] Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected
subgraphs and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015. doi:10.1016/j.
jcss.2014.11.015.

[47] Mark Jerrum and Kitty Meeks. Some hard families of parameterized counting problems.
ACM Trans. Comput. Theory, 7(3):11:1–11:18, 2015. doi:10.1145/2786017.

[48] Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. Comb., 37(5):965–990, 2017. doi:10.1007/s00493-016-3338-5.

[49] Mark Jones, Daniel Lokshtanov, Maadapuzhi S. Ramanujan, Saket Saurabh, and Ondrej
Suchý. Parameterized complexity of directed Steiner tree on sparse graphs. SIAM J. Discret.
Math., 31(2):1294–1327, 2017. doi:10.1137/15M103618X.

21

https://doi.org/10.4230/LIPICS.STACS.2019.25
https://doi.org/10.4230/LIPICS.STACS.2019.25
https://doi.org/10.4230/LIPICS.IPEC.2018.11
https://doi.org/10.1137/05064299X
https://doi.org/10.1137/22m1512211
https://doi.org/10.1007/S10107-022-01783-X
https://arxiv.org/abs/1201.3091
https://doi.org/10.1137/16M109884X
https://doi.org/10.1007/S00453-012-9685-8
https://doi.org/10.1006/JCSS.2000.1727
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1016/J.JCSS.2012.04.004
https://doi.org/10.1016/J.JCSS.2012.04.004
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1145/2786017
https://doi.org/10.1007/s00493-016-3338-5
https://doi.org/10.1137/15M103618X

[50] Karthik C. Srikanta, Dániel Marx, Marcin Pilipczuk, and Uéverton S. Souza. Conditional
lower bounds for sparse parameterized 2-csp: A streamlined proof. In Merav Parter and Seth
Pettie, editors, 2024 Symposium on Simplicity in Algorithms, SOSA 2024, Alexandria, VA,
USA, January 8-10, 2024, pages 383–395. SIAM, 2024. doi:10.1137/1.9781611977936.35.

[51] Victor Klee and David Larman. Diameters of random graphs. Canadian J. Math., 33(3):618–
640, 1981. doi:10.4153/CJM-1981-050-1.

[52] Dusan Knop, Simon Schierreich, and Ondrej Suchý. Balancing the spread of two opinions in
sparse social networks (student abstract). In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 12987–12988.
AAAI Press, 2022. doi:10.1609/AAAI.V36I11.21630.

[53] Alexandr V. Kostochka. Lower bound of the hadwiger number of graphs by their average
degree. Comb., 4(4):307–316, 1984. doi:10.1007/BF02579141.

[54] Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Beneš Network, June 30 2021.
[Online; accessed 2024-09-26]. URL: https://eng.libretexts.org/@go/page/48364.

[55] Frank T. Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999. doi:
10.1145/331524.331526.

[56] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bull. EATCS, 105:41–72, 2011.

[57] Daniel Lokshtanov, Maadapuzhi S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Pa-
rameterized complexity and approximability of directed odd cycle transversal. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020.
doi:10.1137/1.9781611975994.134.

[58] Wolfgang Mader. Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend
großer Kantendichte. Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, 37:86–97, 1972. doi:10.1007/BF02993903.

[59] Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/
toc.2010.v006a005.

[60] Jesper Nederlof and Céline M. F. Swennenhuis. On the fine-grained parameterized complexity
of partial scheduling to minimize the makespan. Algorithmica, 84(8):2309–2334, 2022.
doi:10.1007/S00453-022-00970-8.

[61] Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics with
supplemental results. Technical report, KTH Royal Institute of Technology, 2015.

[62] Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four
terminal pairs. ACM Trans. Comput. Theory, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

[63] Marc Roth and Johannes Schmitt. Counting induced subgraphs: A topological approach to
#W[1]-hardness. Algorithmica, 82(8):2267–2291, 2020. doi:10.1007/s00453-020-00676-9.

[64] Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting small induced subgraphs
satisfying monotone properties. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 1356–1367. IEEE, 2020. doi:10.1109/FOCS46700.2020.00128.

22

https://doi.org/10.1137/1.9781611977936.35
https://doi.org/10.4153/CJM-1981-050-1
https://doi.org/10.1609/AAAI.V36I11.21630
https://doi.org/10.1007/BF02579141
https://eng.libretexts.org/@go/page/48364
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1007/BF02993903
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1007/S00453-022-00970-8
https://doi.org/10.1145/3201775
https://doi.org/10.1007/s00453-020-00676-9
https://doi.org/10.1109/FOCS46700.2020.00128

[65] Claude E. Shannon. A theorem on coloring the lines of a network. J. Math. Physics,
28(1-4):148–152, 1949. doi:10.1002/sapm1949281148.

[66] Robin Thomas and Paul Wollan. An improved linear edge bound for graph linkages. Eur. J.
Comb., 26(3-4):309–324, 2005. doi:10.1016/J.EJC.2004.02.013.

[67] Virginia V. Williams. Hardness of easy problems: Basing hardness on popular conjectures
such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt and Iyad A.
Kanj, editors, 10th International Symposium on Parameterized and Exact Computation,
IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 17–29. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.IPEC.2015.17.

[68] Virginia V. Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV.
Invited lectures, pages 3447–3487. World Sci. Publ., Hackensack, NJ, 2018. doi:10.1142/
9789813272880_0188.

23

https://doi.org/10.1002/sapm1949281148
https://doi.org/10.1016/J.EJC.2004.02.013
https://doi.org/10.4230/LIPICS.IPEC.2015.17
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1142/9789813272880_0188

A Linkage Capacity

In this section we prove Theorem 3.10.

Proof of Theorem 3.10. We first prove the following claim.

Claim A.1. There exists an algorithm A that given a vertex set X of H ⃝⊗ Jt and a matching M
with vertex set X, checks if there is an uncongested M -linkage in H ⃝⊗ Jt in time O(tf(k)).

Proof. Our algorithm works in two steps. In the first step, we select a collection of paths in H.
In the second step, we embed the paths into H ⃝⊗ Jt. First, for each pair of vertices u, v ∈ H, we
write Pu,v for the set of simple paths from u to v in H. We write P for the union of all Pu,v.
Note that |P| ≤ k2+k and that we can enumerate all elements in P in time O(k3+k).

In the next step, we consider all collections Q of P with multiplicity at most t.5 We check if
Q defines an uncongested M -linkage in H ⃝⊗ Jt using the following subroutine.

Let V := V (H ⃝⊗ Jt) and N := M . For an edge v(i)u(j) ∈ N , check if there is a path
P = (v, a2, . . . , as−1, u) in Q. If so, check if there is a vertex a

(bi)
i in V for each i. This defines a

path P ′ = (v(i), a
(b1)
1 , . . . , a

(bs−1)
s−1 , uj) in H ⃝⊗ Jt that goes from v(i) to u(j) since P is a path in

H. Lastly, remove P from Q, v(i)u(j) from N , and the vertices of P ′ from V . We repeat this
process until either we abort, or N is empty. If N is empty, then Q′ defines a valid uncongested
M -linkage since for each edge v(i)u(j) ∈M there is a path in Q from v(i) to u(j), and each vertex
appears in at most one path. This subroutine runs in time O(t · k3) since there are at most
t · k many edges in M , we can find a path P in Q in time O(log(k2+k)) using some basic data
structure, and we can embed P in G in time O(k) in G.

We apply this subroutine to all collections Q of P with multiplicity at most t. If we find
an uncongested M -linkage this way, we return that X contains an uncongested M -linkage.
Otherwise, we return false. Since there are at most (t+ 1)k

2+k many possible collections, the
algorithm runs in O((t+ 1)k

2+k · tk3) which is in O(tf(k)) for f(k) = 3k2+k. ⌟

To find a matching-linked set X of maximum size, we first observe that each vertex set
X ⊆ H ⃝⊗ Jt corresponds to a multiset X ′ of H where X ′ contains the vertex v with multiplicity
|{v(i) : i ∈ [t]}|. Thus X ′ has multiplicity at most t.

It is easy to see that if two vertex sets X and Y define the same multiset X ′ then there is an
automorphism in H ⃝⊗ Jt that maps a vertex v(i) only to a vertex of the form v(j) and that maps
X to Y . Given a matching M on X and a matching N on Y , this automorphism also maps each
uncongested M -linkage to an uncongested N -linkage. Thus X is a matching-linked set if and
only if Y is a matching-linked set. So, we only have to consider the (t+ 1)k many multisets of
H ′ with multiplicity at most t.

Further, we apply the same idea to matchings M in H ⃝⊗ Jt. For each edge v(i)u(j) ∈M , we
add vu to a multiset M ′. Observe that M ′ has multiplicity at most t. It is now easy to see that if
two matchings M and N correspond to the same multiset M ′ then H ⃝⊗ Jt contains a M -linkage
if and only if H ⃝⊗ Jt contains a N -linkage. Thus we only have to consider the (t+ 1)k

2 many
multisets M ′ with multiplicity at most t.

Lastly, to find the maximal linked set we first iterate over all multisets X ′ of V (H) with
multiplicity at most t. Each X ′ defines a vertex set X = {v(i) : 1 ≤ i ≤ d(X ′

v)} where d(X ′
v)

is the multiplicity of the vertex v in X ′. To check if X is matching-linked, we iterate over all
multisets M ′ with multiplicity at most t. Each set M ′ defines a matching M in the following
way. Let V := V (H ⃝⊗ Jt). For each vu ∈M ′, we add v(i)u(j) to M where i := min(s : v(s) ∈ V)
and j := min(s : u(s) ∈ V).6 If not possible, we just ignore M ′ and consider the next multiset.
Then remove v(i) and u(j) from V and continue with the next element in the multiset M ′.

5This means that each path P appears at most t times in Q
6if v = u, then we add v(i)v(i+1) to M .

24

This way, we obtain a matching M that corresponds to M ′. We check M is a matching on X.
If not, we check the next multiset M ′. Otherwise, we use algorithm A from Claim A.1 to check
if X is a M -linkage. If this is not the case, then X is not matching-linked. After considering all
(t+ 1)k

2 many multiset M ′, we know if X is matching-linked. By applying this procedure to all
multisets X ′, we find the largest matching-linked set X in time

O((t+ 1)k︸ ︷︷ ︸
vertex sets

· (t+ 1)k
2︸ ︷︷ ︸

matchings

· (t+ 1)k
2+k · tk3︸ ︷︷ ︸

Algorithm A

),

which is in O(tf(k)) for f(k) = 3k2+k.

B Linkages in Beneš Networks

We prove Theorem 4.2. First, we consider linkages between inputs and outputs in plain Beneš
networks. Algorithm 2 guarantees the existence of such linkages and constructs them efficiently,
as shown in Lemma B.1. Linkages between inputs and outputs in plain Beneš networks then
readily imply linkages among inputs in augmented Beneš networks.

Lemma B.1 ([6]). Given as input ℓ ∈ N and a perfect matching M between the s = 2ℓ inputs
and outputs of Bℓ, the procedure BenesLink(ℓ,M) in Algorithm 2 computes an M -linkage in Bℓ

in time O(s log s).

Proof. We first validate Line 20 by proving that the resulting graph D is always bipartite.
Construct two graphs D1 and D2 containing only the edges added on Line 18 and Line 19
respectively. Trivially, D1 is a perfect matching. We show that D2 is also a perfect matching,
which implies that the graph D contains only even cycles and is hence bipartite. For each i ∈ [s],
we let r(i) := i+ s/2 where addition tacitly wraps into range [s], so r(r(i)) = i. Let π ∈ Sr be
the permutation specified the perfect matching M ; that is, viwπ(i) ∈M . By the construction of
Line 19, an edge ab is in D2 if and only if a = π−1rπ(b). Because (π−1rπ)(π−1rπ) = ids is the
identity mapping, the mapping π−1rπ defines the perfect matching D2.

We then prove by induction that the collection of paths Q returned by BenesLink(ℓ, M)
indeed forms an uncongested M linkage. The base case B1 is easy to verify. Suppose this is true
for Bℓ−1, meaning Q↑ in Line 8 is a M ↑-linkage in B↑ (and the same for Q↓ in Line 10). First,
the new edges viL(i) and R(j)wj exist due the construction of Bℓ, so Q is indeed a collection of
paths. To show that Q is uncongested, note that each vertex v↑

c and v↓
c is adjacent only to vc and

vc+s/2, so the constraints introduced in Line 18 ensure that the mapping L is injective. Therefore,
all vertices v↑

c and v↓
c appears in exactly one path in Q. For the same reason, all vertices w↑

c and
w↓
c appears in exactly one path in Q, too. Together with the induction hypothesis, the set Q is

uncongested.
Finally, we analyze the running time T (s) of BenesLink(ℓ,M) for s = 2ℓ in the word RAM

model. Because the mapping π−1rπ is easy to compute, Line 20 can be implemented in Θ(s)
time by a DFS. All the other operations except for the recursive calls cost Θ(s) time in total. We
obtain the recurrence T (s) = 2T (s/2)+Θ(s), with T (s) = Θ(s log s) by the Master Theorem.

Proof of Theorem 4.2. Let ℓ ∈ N and s = 2ℓ, and denote the inputs and outputs of the augmented
network B̌ℓ by V = {v1, . . . , vs} and W = {w1, . . . , ws}. Note that these sets also exist in the
plain network Bℓ. Given a perfect matching M̌ = {e1, . . . , es/2} on vertex set V , we construct
an M̌ -linkage in B̌ℓ in time O(s log s).

First, define from M̌ a perfect matching M between V and W to be used in the plain network:
For i ∈ [s/2], write ei = ab and include edges aw2i−1 and bw2i into M . Lemma B.1 finds an
M -linkage Q in the plain network Bℓ in time O(s log s). We construct from Q an M̌ -linkage Q̌
in B̌ℓ: For ab ∈ M̌ , writing w and w′ for the unique partners of a and b in M , the concatenated

25

Algorithm 2 Routing from inputs to outputs in plain Beneš networks
1: procedure BenesLink(ℓ, M) computes an M -linkage in Bℓ

2: if ℓ = 1 then
3: return M , interpreted as linkage
4: else
5: k ← 2ℓ

6: F,L,R←ResolveConflict(s, M)
▷ match inputs/outputs of Bℓ with inputs/outputs of B↑

ℓ−1 or B↓
ℓ−1

▷ here, F : [s]→ {↑, ↓}
▷ L : [s]→ {v↑

1, · · · , v
↑
s/2, v

↓
1, · · · , v

↓
s/2} maps to an input in B↑

ℓ−1 or B↓
ℓ−1

▷ R : [s]→ {w↑
1, · · · , w

↑
s/2, w

↓
1, · · · , w

↓
s/2} maps to an output in B↑

ℓ−1 or B↓
ℓ−1

7: M ↑ ← {L(i)R(j) | F (i) = ↑, viwj ∈M}
8: Q↑ = {P ↑

v↑w↑} ← BenesLink(ℓ− 1, M ↑) ▷ find linkage in B↑
ℓ−1

9: M ↓ ← {L(i)R(j) | F (i) = ↓, viwj ∈M}
10: Q↓ = {P ↓

v↓w↓} ← BenesLink(ℓ− 1, M ↓) ▷ find linkage in B↓
ℓ−1

11: for i ∈ [k] do let j be the unique index such that viwj ∈M

12: Let Pviwj ← viL(i) ◦ PF (i)
L(i)R(j) ◦R(j)wj and add to Q

13: return Q

14: procedure ResolveConflict(s, M) outputs three mappings F , L and R

15: Define t(i) :=

{
i, i ≤ s/2;

i− s/2, i > s/2.

16: Let D = ([s], ∅). ▷ undirected 2-regular conflict graph
17: for i ∈ [s/2] do add edges ab to D ▷ adding two conflicts per iteration
18: with a = i and b = i+ s/2 ▷ conflicting paths at inputs i and i+ s/2
19: with unique a, b such that vawi ∈M and vbwi+s/2 ∈M

▷ conflicting paths at outputs i and i+ s/2, translating to inputs a and b
20: Compute a proper 2-coloring F of D using colors {↑, ↓}
21: Construct L by letting L(i)← v

F (i)
t(i) .

22: Construct R by letting R(j)← w
F (i)
t(j) where i the unique index with viwj ∈M .

path P̌ab = Paw ww′ Pw′b exists in B̌ℓ. Because all paths P̌ab exist in B̌ℓ and are vertex-disjoint,
it follows that Q̌ = {P̌ab | ab ∈ M̌} is an M̌ -linkage in B̌ℓ.

C Linkages in Random Graphs

We use G(k, p) for the Erdős-Rényi random graph model with edge probability p on k vertices,
and G(k,m) for the uniform distribution over all graphs with k vertices and m edges.

An equipartition of a set M into r parts is a partition M1, · · · ,Mr such that |Mi −Mj | ≤ 1
for all i, j ∈ [r].

Theorem C.1 ([15, Corollary 1.1]). Let ε > 0 be a constant and d(k) ≥ (1+ ε) log(k). With high
probability, for random H ∼ G(k,m) with even k and m = k · d(k)/2 and any perfect matching
M on vertices [k], with high probability a random equipartition of M into r = ⌈β log(k)/ log(d)⌉
matchings M1, . . . ,Mr satisfies that H contains an Mi-linkage for all i ∈ [r].

We first transfer the above result from the G(k,m) model to the G(k, p) model.

Corollary C.2. Let ε′ > 0 be a constant and p ≥ (1 + ε′) log(k)/k. With high probability, for
random H ∼ G(k, p) with even k and any perfect matching M on vertices [k], with high probability

26

a random equipartition of M into r = ⌈β log(k)/ log(kp)⌉ matchings M1, . . . ,Mr satisfies that H
contains an Mi-linkage for all i ∈ [r].

Proof. Let P be the graph property specified in Theorem C.1 that G(k,m) satisfies with high
probability, and P be the negation of P . We show that, in the setting of this corollary, any graph
drawn from the G(k, p) model satisfies P with high probability.

Note that P is a monotone increasing property, meaning if H satisfies P then H + e satisfies
P too. Therefore, P is monotone decreasing. By coupling, it holds that

Pr
H∼G(k,m1)

[H ∈ P] ≤ Pr
H∼G(k,m2)

[H ∈ P] for m1 ≥ m2. (5)

Take ε = ε′/3, and set m∗ := 1+ε
1+2εp ·

(
k
2

)
. Draw a graph H ∼ G(k, p). By the law of total

probability, we have

Pr
H∼G(k,p)

[H ∈ P] ≤ Pr
H∼G(k,p)

[|E(H)| < m∗]︸ ︷︷ ︸
1○

+ Pr
H∼G(k,p)

[H ∈ P ∧ |E(H)| ≥ m∗]︸ ︷︷ ︸
2○

. (6)

We bound term 1○ by a standard Chernoff bound

1○ = Pr

[
Bin

((
k

2

)
, p

)
<

(
1− ε

1 + 2ε

)(
k

2

)
p

]
≤ exp

{
−
(
k

2

)
p · ε2

2(1 + 2ε)2

}
= O(k−k).

We bound term 2○ by the following.

2○ =

(k2)∑
t=m∗

Pr
H∼G(k,p)

[
H ∈ P

∣∣ |E(H)| = t
]
· Pr
H∼G(k,p)

[|E(H)| = t]

=

(k2)∑
t=m∗

Pr
H′∼G(k,t)

[H ′ ∈ P] · Pr
H∼G(k,p)

[|E(H)| = t]

≤
(k2)∑

t=m∗

Pr
H′∼G(k,m∗)

[H ′ ∈ P] · Pr
H∼G(k,p)

[|E(H)| = t] (by (5))

= Pr
H′∼G(k,m∗)

[H ′ ∈ P] ·
(k2)∑

t=m∗

Pr
H∼G(k,p)

[|E(H)| = t] ≤ Pr
H′∼G(k,m∗)

[H ′ ∈ P].

Because
2m∗

k
≥

(
1 + 3ε

1 + 2ε
· k − 1

k

)
· (1 + ε) log k,

we invoke Theorem C.1 with constant ε for large enough k, to see that 2○ is also negligible.

Proof of Theorem 5.4. Assume k is even. We extend the matching M to a perfect matching
M ′ by pairing the unmatched vertices. By Corollary C.2, a random equipartition of M ′ into
M ′

1, · · · ,M ′
r satisfies the desired property. We then drop the edges in M ′ \M from this partition

to obtain M1, · · · ,Mr with the desired property.
Assume k is odd. Given the matching M , we find an arbitrary unmatched vertex w ∈ V (H).

The induced subgraph H −w is subject to the uniform distribution G(k − 1, p). In the regime of
Corollary C.2, if p = p(k) ≥ (1 + ε′) log(k)/k, then p(k − 1) ≥ (1 + ε′′) log(k)/k for some other
constant ε′′ > 0. Therefore, we can invoke Corollary C.2 again, and the rest of the argument is
the same as the even k case.

27

D Counting Small Induced Subgraphs

We give a proof of Theorem 7.1, relying on [24, Lemma 3.3 & A.3], stated below.

Lemma D.1 ([24, Lemma 3.3]). Given a k-vertex graph invariant Φ, for k ≥ 1, we have

#IndSub(Φ→ ⋆) =
∑
H

Φ̂(H) ·#Sub(H → ⋆), (7)

where H ranges over all unlabelled k-vertex graphs.

Let G = (V,E, c) be a colored graph where c : V (G)→ C. We define G◦ = (V,E) to be the
uncolored version of G. For i ∈ C, we write Vi(G) for the vertices of color i, and for i, j ∈ C, we
write Eij(G) for the edges in G with one endpoint of color i and another of color j. For X ⊆ C
and Y ⊆

(
C
2

)
, let G\X,Y be the graph obtained from G by deleting all vertices with colors from

X and all edges whose endpoints have a color pair from Y , i.e,

G\X,Y =

V \
⋃
i∈X

Vi, E \
⋃
ij∈Y

Eij

 .

The following observation is immediate.

Observation D.2. For graphs H and G with canonically colored H, we have

#Sub(H → G) = #Sub(H → G\∅,E(H)
).

Also, we write G ∼= H to denote that two (colored or uncolored) graphs G,H are isomorphic.

Lemma D.3 ([24, Lemma A.3]). Let k ∈ N and let the following be given:

• Numbers α1, . . . , αs ∈ Q and pairwise non-isomorphic uncolored graphs H1, . . . ,Hs with
|V (Hi)| = k for all i ∈ [s], which define the graph invariant

f(⋆) :=
s∑

i=1

αi ·#Sub(Hi → ⋆),

• a canonically colored graph H with V (H) = [k] and H◦ ∼= Hb for some b ∈ [s], and

• a colored graph G with coloring c : V (G)→ [k] satisfying Eij(G) = ∅ for ij /∈ E(H).

Then we have
αb ·#Sub(H → G) =

∑
X⊆V (H)
Y⊆E(H)

(−1)|X|+|Y |f(G◦
\X,Y).

With these tools at our disposal, we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. Let Φ be a k-vertex graph invariant and suppose H is a graph with
Φ̂(H) ̸= 0 and E(H) ≥ k · ℓ ≥ N0. Without loss of generality assume V (H) = [k]. We give an
algorithm for #ColSub(H) that uses an algorithm for #IndSub(Φ) as a subroutine.

Let G be the input graph for the problem #ColSub(H). We may assume that G = G\∅,E(H)

by Observation D.2. We wish to determine #Sub(Hcan → G). By Lemma D.1 we have

#IndSub(Φ→ ⋆) =
∑
F

Φ̂(F) ·#Sub(F → ⋆) =: f(⋆),

28

where F ranges over all k-vertex graphs. Invoking Lemma D.3, we obtain that

Φ̂(H) ·#Sub(Hcan → G) =
∑

X⊆V (H)
Y⊆E(H)

(−1)|X|+|Y |f(G◦
\X,Y). (8)

So we can compute #Sub(Hcan → G) by evaluating the right-hand side of (8) and dividing
by Φ̂(H) ̸= 0. Note that all relevant values f(G◦

\X,Y) can be obtained by the oracle calls
#IndSub(Φ → G◦

\X,Y) without parameter increase in overall time 2|V (H)|+|E(H)| · nO(1). The

value Φ̂(H) can be computed by brute-force by evaluating Φ on 2O(k2) many k-vertex graphs.
Hence, an O(nβ·ℓ) algorithm for #IndSub(Φ) gives an O(nc·β·ℓ) for #ColSub(H) for some
suitable fixed constant c. Now, the theorem follows from Theorem 1.3

29

	Introduction
	Main Concept: Linkage Capacity
	Applications of Linkage Capacity

	Preliminaries
	Basic Definitions
	Linkages

	Lower Bounds from Linkage Capacity
	Instances That Fit into Blowups
	The Linkage Capacity of a Graph
	Fitting Instances into Blowups via Linkage Capacity

	Switching Networks
	Patterns of Superlinear Density
	Worst Case
	Average Case

	Large-Treewidth Patterns and Concurrent Flows
	Implications for Counting Small Induced Subgraphs
	Linkage Capacity
	Linkages in Beneš Networks
	Linkages in Random Graphs
	Counting Small Induced Subgraphs

