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AbstRact. We give a simple polynomial-time approximation algorithm for the total variation distance
between two product distributions.

1. IntRoduction

The total variation (TV) distance is a fundamental metric to measure the difference between two
distributions. It is essentially the 𝐿1 distance. Unlike many other quantities for similar uses, such as the
relative entropy and the 𝜒2-divergence, the TV distance does not tensorise over product distributions.
In fact, it was discovered recently that, somewhat surprisingly, exact computation of the total variation
distance, even between product distributions over the Boolean domain, is #P-hard [1].

This leaves open the question of approximation complexity of the TV distance. In [1], the authors
give polynomial-time randomised approximation algorithms in two special cases over the Boolean
domain, when one of the distribution has marginals over 1/2 and dominates the other, or when one of
the distribution has a constant number of distinct marginals. Their method is based on Dyer’s dynamic
programming algorithm for approximating the number of knapsack solutions [2].

In this note, we give a simple polynomial-time approximation algorithm for total variation distance
between two product distributions. Our algorithm is based on the Monte Carlo method and does not
have further restrictions.
Theorem 1.1. Let [𝑞] = {1, 2, . . . , 𝑞} be a finite set. There exists an algorithm such that given two product
distributions 𝑃,𝑄 over [𝑞]𝑛 and parameters 𝜀 > 0 and 0 < 𝛿 < 1, it outputs a random value 𝑑 in time
𝑂 (𝑛2

𝜀2
log 1

𝛿 ) such that (1 − 𝜀)𝑑TV (𝑃,𝑄) ≤ 𝑑 ≤ (1 + 𝜀)𝑑TV (𝑃,𝑄) holds with probability at least 1 − 𝛿 .

Our algorithm can also handle the case where each coordinate has a different domain size without
any change. In Theorem 1.1, the input product distributions are given by the marginal probability
for each coordinate and each 𝑐 ∈ [𝑞] in binary. The stated running time assumes that all arithmetic
operations can be done in 𝑂 (1) time.

To approximate the TV distance, the naïve Monte Carlo algorithm works well when the two distri-
butions are sufficiently far away. However, when the TV distance is exponentially small, naïve Monte
Carlo may require exponentially many samples to return an accurate estimate. Our idea is to consider
a distribution that can be efficiently sampled from and yet boosts the probability that the two distribu-
tions are different. Ideally, we would want to use the optimal coupling, but that is difficult to compute.
We use instead the coordinate-wise greedy coupling as a proxy, where each coordinate is coupled
optimally independently. We further condition on the (potentially very unlikely) event that the two
samples are different. Normally, conditioning on an unlikely event is a bad move since computational
tasks would have become hard. However, here they are still easy thanks to the independence of the
coordinates under the coupling. With this conditional distribution, our estimator is the ratio between
the probabilities of the assignment in the optimal coupling and in the greedy coupling. We show that
this estimator is always bounded from above by 1 and its expectation is at least 1/𝑛. This means that
the standard Monte Carlo method will succeed with high probability using only polynomially many
samples.
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One remaining question is if a deterministic approximation algorithm exists for the TV distance.
The answer might be positive, because of the connection with counting knapsack solutions established
by Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, and Vinodchandran [1], and the deterministic ap-
proximation algorithm for the latter problem by Štefankovič, Vempala, and Vigoda [4] and by Gopalan,
Klivans, and Meka [3], independently.

2. PReliminaRies

Let Ω be a (finite) state space, and 𝑃 and𝑄 be two distributions over Ω. The total variation distance
is defined by

𝑑TV (𝑃,𝑄) := 1
2

∑
𝜔 ∈Ω

|𝑃 (𝜔) −𝑄 (𝜔) | .

It satisfies the following:
• for any event 𝐴 ⊆ Ω, 𝑑TV (𝑃,𝑄) ≥ |𝑃 (𝐴) −𝑄 (𝐴) |;
• for any coupling C between 𝑃 and 𝑄 , 𝑑TV (𝑃,𝑄) ≤ PrC [𝑋 ≠ 𝑌 ], where 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄 .

In particular, there exists an event𝐴𝑂 and an optimal couplingO such that𝑑TV (𝑃,𝑄) = |𝑃 (𝐴𝑂 ) −𝑄 (𝐴𝑂 ) | =
PrO [𝑋 ≠ 𝑌 ]. Optimal couplings are not necessarily unique. For any optimal coupling O, it holds that

∀𝜔 ∈ Ω, PrO [𝑋 = 𝑌 = 𝜔] = min{𝑃 (𝜔), 𝑄 (𝜔)}.(1)

The above equation holds because (1) for any valid coupling C, it holds that PrC [𝑋 = 𝑌 = 𝜔] ≤
min{𝑃 (𝜔), 𝑄 (𝜔)}; (2) to achieve the optimal coupling, every 𝜔 must achieve the equality. We have

PrO [𝑋 = 𝜔 ∧ 𝑌 ≠ 𝑋 ] = PrO [𝑋 = 𝜔] − PrO [𝑋 = 𝑌 = 𝜔] = max{0, 𝑃 (𝜔) −𝑄 (𝜔)}.(2)

3. AlgoRithm

From now on we consider only product distributions. Let Ω = [𝑞]𝑛 be the state space, where
[𝑞] = {1, . . . , 𝑞} is a finite set. Let 𝑃 = 𝑃1 ⊗ 𝑃2 ⊗ · · · ⊗ 𝑃𝑛 and 𝑄 = 𝑄1 ⊗ 𝑄2 ⊗ · · · ⊗ 𝑄𝑛 be two product
distributions. Let O be an (arbitrary) optimal coupling between 𝑃 and 𝑄 .

Let C be the coordinate-wise greedy coupling. Namely, for each coordinate 𝑖 and 𝑐 ∈ [𝑞], PrC [𝑋𝑖 =
𝑌𝑖 = 𝑐] = min{𝑃𝑖 (𝑐), 𝑄𝑖 (𝑐)}, and the remaining probability can be assigned arbitrarily as long as C is a
valid coupling (but each coordinate is independent). In other words, for each 𝑖 ∈ [𝑛], C couples 𝑃𝑖 and
𝑄𝑖 optimally and independently. Note that

PrC [𝑋 ≠ 𝑌 ] = 1 − PrC [𝑋 = 𝑌 ] = 1 −
𝑛∏
𝑖=1

(1 − 𝑑TV (𝑃𝑖 , 𝑄𝑖))(3)

can be computed exactly.
Consider the distribution 𝜋 such that

𝜋 (𝜔) := PrC [𝑋 = 𝜔 | 𝑋 ≠ 𝑌 ] .(4)

We may assume 𝑃 and 𝑄 are not identical, as otherwise the algorithm just outputs 0. This makes sure
that the distribution 𝜋 is well-defined. The following lemma shows that we can draw random samples
from 𝜋 efficiently.

Lemma 3.1. We can sample from the distribution 𝜋 in 𝑂 (𝑛) time.

Proof. Wedraw a random sample𝜔 ∈ [𝑞]𝑛 from 𝜋 index by index. In the𝑘-th step, where 1 ≤ 𝑘 ≤ 𝑛, we
sample 𝜔𝑘 ∈ [𝑞] from 𝜋𝑘 (· | 𝜔1, 𝜔2, . . . , 𝜔𝑘−1), which is the marginal distribution on the 𝑘-th variable
conditional on the values of the first 𝑘 − 1 variables being 𝜔1, 𝜔2, . . . , 𝜔𝑘−1. By definition,

𝜋𝑘 (𝜔𝑘 | 𝜔1, 𝜔2, . . . , 𝜔𝑘−1) =
Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘,𝑋𝑖 = 𝜔𝑖]

Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑋𝑖 = 𝜔𝑖]
.
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As𝜔1, . . . , 𝜔𝑘−1 are sampled from the marginal distribution of 𝜋 , the denominator is positive. We show
how to compute the numerator next, and the denominator can be computed similarly. By definition

Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘,𝑋𝑖 = 𝜔𝑖] = Pr(𝑋,𝑌 )∼C [∀1 ≤ 𝑖 ≤ 𝑘,𝑋𝑖 = 𝜔𝑖 | 𝑋 ≠ 𝑌 ]

(by Bayes’ law) =
(
1 − Pr(𝑋,𝑌 )∼C [𝑋 = 𝑌 | ∀1 ≤ 𝑖 ≤ 𝑘,𝑋𝑖 = 𝜔𝑖]

)
·

∏𝑘
𝑖=1 𝑃𝑖 (𝜔𝑖)

1 −∏𝑛
𝑖=1(1 − 𝑑TV (𝑃𝑖 , 𝑄𝑖))

.

In the coupling C, every pair of 𝑋𝑖 and 𝑌𝑖 is coupled optimally and independently. We have

Pr(𝑋,𝑌 )∼C [𝑋 = 𝑌 | ∀1 ≤ 𝑖 ≤ 𝑘,𝑋𝑖 = 𝜔𝑖] =
𝑘∏
𝑖=1

PrC [𝑋𝑖 = 𝑌𝑖 = 𝜔𝑖]
PrC [𝑋𝑖 = 𝜔𝑖]

𝑛∏
𝑖=𝑘+1

PrC [𝑋𝑖 = 𝑌𝑖]

(by (1)) =
𝑘∏
𝑖=1

min{𝑃𝑖 (𝜔𝑖), 𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔𝑖)

𝑛∏
𝑖=𝑘+1

(1 − 𝑑TV (𝑃𝑖 , 𝑄𝑖)) .(5)

Combining the two equations, we can compute Pr𝑋∼𝜋 [∀1 ≤ 𝑖 ≤ 𝑘,𝑋𝑖 = 𝜔𝑖], and thus we can
compute and sample from 𝜋𝑘 (· | 𝜔1, 𝜔2, . . . , 𝜔𝑘−1). When sampling from the distribution 𝜋 , we pre-
process

∏𝑛
𝑖=𝑘+1(1 − 𝑑TV (𝑃𝑖 , 𝑄𝑖)) for all 𝑘 , and maintain the prefix products

∏𝑘
𝑖=1min{𝑃𝑖 (𝜔𝑖), 𝑄𝑖 (𝜔𝑖)}

and
∏𝑘

𝑖=1 𝑃𝑖 (𝜔𝑖). This way, each conditional marginal distribution can be computed with 𝑂𝑞 (1) incre-
mental cost. Hence, the total running time is 𝑂𝑞 (𝑛), where 𝑂𝑞 (·) hides a factor linear in 𝑞. □

Let 𝜔 be a random sample from 𝜋 . Now consider the following estimator:

𝑓 (𝜔) := PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] =

max{0, 𝑃 (𝜔) −𝑄 (𝜔)}
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] ,(6)

where the second equality is due to (2). This estimator 𝑓 is well-defined, because when PrC [𝑋 =
𝜔 ∧ 𝑋 ≠ 𝑌 ] = 0, 𝜋 (𝜔) = 0 as well and 𝜔 will not be drawn.

In fact, if 𝜋 (𝜔) = 0, or equivalently PrC [𝑋 = 𝜔∧𝑋 ≠ 𝑌 ] = 0, it must be thatmax{0, 𝑃 (𝜔)−𝑄 (𝜔)} = 0.
This is because PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] = 0 implies that either PrC [𝑋 = 𝜔] = 𝑃 (𝜔) = 0 or PrC [𝑋 ≠ 𝑌 |
𝑋 = 𝜔] = 0. In the first case, max{0, 𝑃 (𝜔) −𝑄 (𝜔)} = 0. In the second case PrC [𝑌 = 𝜔 | 𝑋 = 𝜔] = 1,
which implies that 𝑄 (𝜔) ≥ 𝑃 (𝜔), and max{0, 𝑃 (𝜔) −𝑄 (𝜔)} = 0 as well.

Lemma 3.2. For any 𝜔 ∈ Ω with 𝜋 (𝜔) > 0, 𝑓 (𝜔) can be computed in 𝑂 (𝑛) time.

Proof. Note that

PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] = 𝑃 (𝜔) PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔] = 𝑃 (𝜔)(1 − PrC [𝑋 = 𝑌 | 𝑋 = 𝜔]) .
Since 𝜋 (𝜔) > 0, it holds that 𝑃 (𝜔) > 0. Using (5), we have

𝑓 (𝜔) = max

0,
1 − 𝑄 (𝜔)

𝑃 (𝜔)
1

𝑃 (𝜔) PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

 = max

0,
1 −∏𝑛

𝑖=1
𝑄𝑖 (𝜔𝑖 )
𝑃𝑖 (𝜔𝑖 )

1 −∏𝑛
𝑖=1

min{𝑃𝑖 (𝜔𝑖 ),𝑄𝑖 (𝜔𝑖 ) }
𝑃𝑖 (𝜔)

 ,
which can be computed in 𝑂 (𝑛) time. □

Lemma 3.3. We have the following:

E𝜋 𝑓 =
PrO [𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] ;(7)

1
𝑛
≤ E𝜋 𝑓 ≤ 1.(8)

Moreover, for any 𝜔 ∈ Ω with 𝜋 (𝜔) > 0,

0 ≤ 𝑓 (𝜔) ≤ 1,(9)

and it holds that

Var𝜋 𝑓 ≤ E𝜋 𝑓 .(10)
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Proof. For (7), Let Ω+ = {𝜔 ∈ Ω | 𝜋 (𝜔) > 0}. Then,

E𝜋 𝑓 =
∑
𝜔 ∈Ω+

𝜋 (𝜔) × PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

=
∑
𝜔 ∈Ω+

PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] × PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

=

∑
𝜔 ∈Ω+ PrO [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ]

PrC [𝑋 ≠ 𝑌 ] =
PrO [𝑋 ≠ 𝑌 ]
PrC [𝑋 ≠ 𝑌 ] ,

where in the last equation we used the aforementioned fact that 𝜋 (𝜔) = 0 implies max{0, 𝑃 (𝜔) −
𝑄 (𝜔)} = 0.

For (8), as O is the optimal coupling, PrO [𝑋 ≠ 𝑌 ] ≤ PrC [𝑋 ≠ 𝑌 ]. For the other direction, notice
that O projected to coordinate 𝑖 , denoted O𝑖 , is a coupling between 𝑃𝑖 and 𝑄𝑖 . Thus,

PrO [𝑋 ≠ 𝑌 ] ≥ max
1≤𝑖≤𝑛

PrO𝑖 [𝑋𝑖 ≠ 𝑌𝑖] ≥ max
1≤𝑖≤𝑛

𝑑TV (𝑃𝑖 , 𝑄𝑖) ,

On the other hand, by the union bound,

PrC [𝑋 ≠ 𝑌 ] ≤
𝑛∑
𝑖=1

PrC𝑖 [𝑋𝑖 ≠ 𝑌𝑖] =
𝑛∑
𝑖=1

𝑑TV (𝑃𝑖 , 𝑄𝑖) ≤ 𝑛 max
1≤𝑖≤𝑛

𝑑TV (𝑃𝑖 , 𝑄𝑖) .

For (9), the lower bound is trivial. For the upper bound, we only need to consider 𝜔 ∈ Ω+ such that
𝑃 (𝜔) > 𝑄 (𝜔). In this case

𝑓 (𝜔) = max{0, 𝑃 (𝜔) −𝑄 (𝜔)}
PrC [𝑋 = 𝜔 ∧ 𝑋 ≠ 𝑌 ] =

𝑃 (𝜔) −𝑄 (𝜔)
PrC [𝑋 = 𝜔] PrC [𝑋 ≠ 𝑌 | 𝑋 = 𝜔]

=
𝑃 (𝜔) −𝑄 (𝜔)

𝑃 (𝜔)(1 − PrC [𝑋 = 𝑌 | 𝑋 = 𝜔]) =
1 − 𝑄 (𝜔)

𝑃 (𝜔)
1 − PrC [𝑋 = 𝑌 | 𝑋 = 𝜔] .

Since C couples each coordinate independently,

PrC [𝑋 = 𝑌 | 𝑋 = 𝜔] =
𝑛∏
𝑖=1

min{𝑃𝑖 (𝜔𝑖), 𝑄𝑖 (𝜔𝑖)}
𝑃𝑖 (𝜔𝑖)

≤
𝑛∏
𝑖=1

𝑄𝑖 (𝜔𝑖)
𝑃𝑖 (𝜔𝑖)

=
𝑄 (𝜔)
𝑃 (𝜔) .

This finishes the proof of (9).
For (10), since 0 ≤ 𝑓 (𝜔) ≤ 1 for all Ω ∈ Ω+, 𝑓 (𝜔)2 ≤ 𝑓 (𝜔) and thus E𝜋 𝑓 2 ≤ E𝜋 𝑓 . We have

Var𝜋 𝑓 = E𝜋 𝑓 2 − (E𝜋 𝑓 )2 ≤ E𝜋 𝑓 2 ≤ E𝜋 𝑓 . □

Lemma 3.3 implies that standard Monte Carlo method can be used to accurately estimate E𝜋 𝑓 =
PrO [𝑋≠𝑌 ]
PrC [𝑋≠𝑌 ] . To implement the Monte Carlo algorithm, we use Lemma 3.1 and Lemma 3.2.
To be more specific, our approximate algorithm is to compute the median of means. The input

contains the descriptions of 2𝑛 distributions 𝑃1, 𝑃2, . . . , 𝑃𝑛, 𝑄1, 𝑄2, . . . , 𝑄𝑛 together with two parameters
𝜀 > 0 and 0 < 𝛿 < 1. The algorithm proceeds as follows:

• for each 𝑖 from 1 to𝑚 = ⌈ 10𝑛
𝜀2
⌉, independently sample 𝜔𝑖 ∼ 𝜋 and let

𝐹 =
1
𝑚

𝑚∑
𝑖=1

𝑓 (𝜔𝑖);

• use independent samples to compute 𝐹 for 𝑠 = 10⌈log 1
𝛿 ⌉ times to get 𝐹1, 𝐹2, . . . , 𝐹𝑠 and let

𝐹 = Median{𝐹1, 𝐹2, . . . , 𝐹𝑠 };

• output the value 𝑑 = (1 −∏𝑛
𝑖=1(1 − 𝑑TV (𝑃𝑖 , 𝑄𝑖)))𝐹 .

We claim that

Pr [|𝐹 − E𝜋 𝑓 | ≥ 𝜀 E𝜋 𝑓 ] ≤ 1
10

.(11)
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Assuming that (11) holds, by the Chernoff bound, it holds that

Pr
[���𝐹 − E𝜋 𝑓

��� ≥ 𝜀 E𝜋 𝑓
]
≤ 𝛿.

Using (7) in Lemma 3.3 and (3), we have

Pr
[���𝑑 − 𝑑TV (𝑃,𝑄)

��� ≥ 𝜀𝑑TV (𝑃,𝑄)
]
= Pr

[���𝐹 − E𝜋 𝑓
��� ≥ 𝜀 E𝜋 𝑓

]
≤ 𝛿.

By Lemma 3.1 and Lemma 3.2, the total running time is𝑂 (𝑛𝑚𝑠) = 𝑂 (𝑛2

𝜀2
log 1

𝛿 ). This provesTheorem 1.1.
Finally, we prove the claim (11). Note that the expectation and the variance of the random variable

𝐹 satisfy that E 𝐹 = E𝜋 𝑓 and Var 𝐹 = 1
𝑚 Var𝜋 𝑓 . By Chebyshev’s inequality,

Pr [|𝐹 − E𝜋 𝑓 | ≥ 𝜀 E𝜋 𝑓 ] = Pr [|𝐹 − E 𝐹 | ≥ 𝜀 E 𝐹 ] ≤ Var 𝐹
𝜀2(E 𝐹 )2 =

Var𝜋 𝑓

𝑚𝜀2(E𝜋 𝑓 )2

≤ 1
𝑚𝜀2 E𝜋 𝑓

≤ 𝑛

𝑚𝜀2
≤ 1

10
.(by (10), (8), and𝑚 = ⌈ 10𝑛

𝜀2
⌉)
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